## Optically Active Antifungal Azoles. IX.<sup>1)</sup> An Alternative Synthetic Route for 2-[(1R,2R)-2-(2,4-Difluorophenyl)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-yl)propyl]-4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2H,4H)-1,2,4-triazolone and Its Analogs

Tomoyuki KITAZAKI, \*.<sup>*a*</sup> Akihiro TASAKA, <sup>*a*</sup> Hiroshi Hosono, <sup>*b*</sup> Yoshihiro Matsushita, <sup>*a*</sup> and Katsumi Itoh<sup>*a*</sup>

Medicinal Chemistry Laboratories<sup>a</sup> and Pharmaceutical Research Laboratories II,<sup>b</sup> Pharmaceutical Research Division, Takeda Chemical Industries, Ltd., 17–85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532–8686, Japan. Received October 7, 1998; accepted December 9, 1998

A new route for the synthesis of the optically active antifungal azole TAK-187, 2-[(1R,2R)-2-(2,4-difluo-rophenyl)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-yl)propyl]-4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2H,4H)-1,2,4-triazolone, was established. The key synthetic intermediate, <math>2-[(1R)-2-(2,4-difluorophenyl)-2-oxo-1-methylethyl]-4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2H,4H)-1,2,4-triazolone (8), was prepared starting from the esters (11a, b) of (S)-lactic acid in a stereocontrolled manner. This optically active propiophenone derivative 8 was converted to the one carbon-elongated (1R,2S)-diol 7, which was then reacted with 1H-1,2,4-triazole to yield TAK-187. This newly developed route was applied to the synthesis of the analogs (25a, b—28a, b) containing an imidazolone or imidazolidinone nucleus.

Key words TAK-187; antifungal azole; triazolone; imidazolone; imidazolidinone; chiral synthesis

We have recently reported the synthesis and antifungal activity of triazolone and tetrazolone derivatives with the general formula I (Chart 1).<sup>2)</sup> Among these azolones, 2-[(1R,2R)-2-(2,4-difluorophenyl)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-yl)propyl]-4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2H,4H)-1,2,4-triazolone (TAK-187) was selected as a candidate for clinical trials.<sup>3)</sup> We subsequently extended our study of the azolone-based antifungal azoles to the analogs with carbon substitutions in the azolone moiety: *i.e.*, the imidazolone (II) and imidazolidinone (III) derivatives depicted in Chart 1. In the preceding report, we described the stereocontrolled synthesis of II and III as well as their potent antifungal activity and broad antifungal spectrum.<sup>1</sup>

As reported previously, compounds I were prepared starting from methyl (R)-lactate (1) as a chiral synthon via the route involving SN2 displacement of the triflate 5 with an azolone anion followed by the oxirane ring-opening reaction with 1H-1,2,4-tiazole, as exemplified in Chart 2 for the synthesis of TAK-187  $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow TAK-187)$ .<sup>2)</sup> The imidazolones II were synthesized via substantially the same sequence of reactions as above, and the imidazolidinones III could be obtained from II by catalytic hydrogenation.<sup>1)</sup> The procedure shown in Chart 2 was useful for the preparation of a wide variety of optically active 1,2,3-trisubstituted-2-butanols such as I-III, since the triflate 5 is highly reactive toward nucleophiles and all reaction steps are fully stereocontrolled. This method, however, is composed of several reactions and involves the labile synthetic intermediate  $5^{4}$  which tends to decompose and, hence, there was a need to develop a more practical and efficient route for the synthesis of azolones I-III. In this paper, we describe an alternative route starting from (S)-lactic acid derivatives for the synthesis of TAK-187 and its congeners (II, III).

Our protocol for the new synthetic route to TAK-187 is illustrated in Chart 3 by a retrosynthetic formula. The final step is the introduction of 1H-1,2,4-triazole into the oxirane **6** or the diol **7**. For the synthesis of **6** and **7**, the optically active propiophenone derivative **8** with the (*R*)-configuration could be used as the precursor, since several synthetic procedures have been reported for the preparation of one-carbonelongated diols or oxiranes from the corresponding carbonyl compounds,<sup>5)</sup> although asymmetric induction at the carbon in the 2-position must be controlled. It was considered that **8** would be obtained from the (*S*)-lactic acid derivative **11** *via* an *SN*2 reaction, *i.e.*, **11** $\rightarrow$ **9** $\rightarrow$ **8** or **11** $\rightarrow$ **10** $\rightarrow$ **8**. We, therefore, focused our initial efforts on the preparation of **8** from **11**.

The synthetic routes investigated are illustrated in Chart 4. Firstly, we examined the synthesis of 8 via a route involving SN2 displacement of the (S)-lactic acid derivative followed by Friedel-Crafts (F.-C.) acylation (route A). Benzyl (S)-lactate (11a) was converted to the triflate 12 using trifluoromethanesulfonic anhydride (Tf<sub>2</sub>O) in the presence of diisopropylethylamine (iso-Pr<sub>2</sub>NEt). The resulting triflate **12** was isolated as an oil, which was stable during isolation by chromatography, followed by evaporation of the eluate under ordinary conditions.<sup>4)</sup> The substitution reaction of **12** with an anion of 4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2H,4H)-1,2,4-triazolone  $(H-TAZ)^{2}$  in a mixture of N,N-dimethylformamide (DMF) and tetrahydrofuran (THF) gave a single product in 82% yield. The IR spectrum of the product showed two strong absorption bands centered at 1746 and  $1707 \text{ cm}^{-1}$  due to the stretching vibration of two sorts of carbonyl groups and, hence, the structure was determined to be the desired Nsubstituted isomer 13a, not the O-substituted isomer 13b. The optical purity of 13a was assessed by HPLC using a chiral column and the enantiomer excess (ee) was determined to be 93%. Removal of the benzyl group of 13a by catalytic hydrogenolysis afforded the corresponding carboxylic acid 9 in 90% yield. Conversion of 9 to the chloride 14 was performed using oxalyl chloride [(COCl)<sub>2</sub>]. The ee of 14 was checked by HPLC after converting to the corresponding methyl ester

© 1999 Pharmaceutical Society of Japan



361





15 and confirmed to be maintained at 93%. Compound 14 was allowed to react with 1,3-difluorobenzene in the presence of aluminum chloride (AlCl<sub>3</sub>) to give the propiophenone derivative 8. It was expected that the proton (Ha) on the  $\alpha$ -carbon of the carbonyl moiety in 8 would be somewhat acidic and liable to cause racemization. In fact, the value of the optical rotation  $([\alpha]_D)$  of 8 was observed to decrease through purification by silica gel column chromatography using an ordinary eluent, such as a mixture of ethyl acetate (AcOEt) and hexane. We suspect that silica gel works as a base to cause this racemization.<sup>6)</sup> Thus we carried out silica gel column chromatography using a weakly acidic eluent, *i.e.*, a mixture of AcOEt and hexane (1:2) containing a small amount (1%) of acetic acid (AcOH). The optically active propiophenone 8 could consequently be obtained as a viscous oil in 61% yield based on 9. The ee of 8 was measured by HPLC and determined to be 93%.

Next, the route involving SN2 displacement of the (2S)-2hydroxypropiophenone derivative 10 with H-Taz (route B) was investigated for the synthesis of 8. We had already established a method for the synthesis of the (2S)-alcohol 10 starting from ethyl (S)-lactate (11b), *i.e.*,  $11b \rightarrow 16 \rightarrow 17 \rightarrow 18 \rightarrow$  $10^{7}$  The alcohol 10 was converted to the corresponding triflate 19 by treatment with Tf<sub>2</sub>O in the presence of iso-Pr<sub>2</sub>NEt. The resulting triflate 19 was found to be stable enough to be isolated as an oil by evaporation of the eluate obtained from silica gel chromatography.<sup>4)</sup> Compound 19 was then allowed to react with the sodium salt of H-TAZ at -30—-50 °C in a mixture of 1-methyl-2-pyrrolidone (MP) and THF to give the two isomeric products, in a ratio of 4:1 on HPLC, which were separated by silica gel column chromatography using AcOEt-hexane-AcOH (1:3:0.04). The major product (more polar, 62% isolated yield based on H-TAZ) was identical to the N-substituted isomer 8 prepared via



route A described above. Therefore, the minor product (less polar) was determined to be the *O*-substituted isomer **20**. The ee of **8** obtained *via* route B was assessed by HPLC and determined to be 96%.

The optical purity of **8** obtained *via* routes A and B could be increased to 97—98% by removal of a small amount of the crystalline racemate which precipitated out of a solution of **8** in diisopropyl ether (iso- $Pr_2O$ ) upon standing.

Both routes, A and B, described above for the synthesis of 8 were thus shown to proceed in a stereoselective manner as well as to give a good overall yield. We then studied routes for converting 8 to TAK-187. The three routes (methods a, b, c) shown in Chart 5 were applicable to this conversion.<sup>8)</sup> Compound 8 was reacted with vinylmagnesium bromide to give the vinyl derivative 21 (66% yield), which was obtained as a single diastereomer. This result indicates that reactions involving a Grignard's reagent and 8 proceed in a stereoselective manner.<sup>9)</sup> The carbon–carbon double bond in **21** was cleaved using sodium periodate (NaIO<sub>4</sub>) in the presence of a catalytic amount of osmium tetroxide  $(OsO_4)$ , and the subsequent reduction with sodium borohydride (NaBH<sub>4</sub>) gave the desired (1R,2S)-diol 7 (method a).<sup>10)</sup> The isolated yield, however, was inadequate (12% from 21) to warrant further study of the reaction conditions. We next examined ozonolysis of **21**. Bubbling ozone  $(O_3)$  into a solution of **21** followed by the addition of dimethylsulfide (Me<sub>2</sub>S) gave the aldehyde 22 in 76% yield, and subsequent reduction with NaBH<sub>4</sub> afforded 7 in 55% yield (method b). For the practical synthesis of TAK-187, it was desired to obtain 7 in a greater isolated yield as well as to adopt the easiest and safest procedure.

Compound 8 was reacted with (dimethylisopropoxysilyl)-

methylmagnesium chloride [iso-PrOSi(Me<sub>2</sub>)CH<sub>2</sub>MgCl].<sup>5c-e)</sup> The silvlalcohol 23 was obtained stereoselectively as crystals with >99% ee in 82% isolated yield. Oxidative desilylation of 23 with hydrogen peroxide  $(H_2O_2)^{5c-e}$  in the presence of sodium bicarbonate (NaHCO<sub>3</sub>) afforded 7 in high yield (94% from 23: method c). Compound 7 prepared by this method was identical to that obtained by methods a and b. Furthermore, the optical purity of 7 obtained via each of the three routes (methods a, b and c) was assessed by HPLC and confirmed to be high enough (>99% ee) for use in the subsequent synthetic step. On the basis of the results described above, we chose method c for the preparation of 7. The highly optically pure diol 7 was converted to the corresponding mesylate 24 followed by treatment with 1H-1,2,4-triazole in the presence of potassium carbonate (K<sub>2</sub>CO<sub>3</sub>)<sup>11)</sup> to give TAK-187 with >99% ee in 80% isolated yield. This was identical to our authentic sample.<sup>2)</sup>

The synthetic method established as described above was then applied to the preparation of the imidazolone (II) and imidazolidinone (III) derivatives depicted in Chart 1. Among these congeners, the 2,4-difluorophenyl (**25a**, **b**, **27a**, **b**) and 2-fluorophenyl (**26a**, **b**, **28a**, **b**) derivatives, which exhibit strong antifungal activity,<sup>1)</sup> were chosen as the synthetic targets (Chart 6).

We first attempted the synthesis of the propiophenone derivative **31a** by route A involving F.-C. acylation. The triflate of benzyl (*S*)-lactate **12** was allowed to react with an anion of 1-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-2(1H,3H)-imidazolone (H-IMz: R=OCH<sub>2</sub>CF<sub>2</sub>CF<sub>2</sub>H)<sup>1</sup>) to prepare the imidazolone-*N*-substituted lactate derivative **29**, which was obtained as crystals in 85% yield. The IR spectrum of **29** 



Chart

showed two strong absorption bands ( $v_{\rm C=O}$ ) at 1742 and  $1692 \text{ cm}^{-1}$ , similar to **13a**. The benzyl group of **29** was removed by catalytic hydrogenolysis to give the lactic acid derivative 30 in 81% yield. Compound 30 was then converted to the corresponding chloride by treatment with (COCl)<sub>2</sub> and subsequently subjected to F.-C. acylation as described for the synthesis of 8 to obtain 31a. However, considerable decomposition occurred during the course of the reaction, and the isolated yield for 31a was low (13%). We, therefore, turned to route B for the synthesis of **31a**. SN2 reaction of the 2,4difluorophenyl-triflate 19 with an anion of H-IMZ (R=  $OCH_2CF_2CF_2H$ ) gave a mixture of two products in a ratio of 5:1 on HPLC, similar to the synthesis of 8. The more polar product on TLC (major component) was identical to the Nsubstituted derivative 31a prepared by the above F.-C. reaction and, hence, the less polar product (minor component) was assumed to be the O-substituted by-product 33a. These products were separated by chromatography on silica gel using AcOEt-hexane-AcOH (1:2:0.03) as the eluent, and 31a was isolated as a solid in 49% yield based on H-IMZ. The ee of **31a** after recrystallization was 99% on HPLC. The congener 31b containing the 4-(1,1,2,2-tetrafluoroethoxy)phenyl moiety was prepared using an anion of H-IMZ (R=  $OCF_2CF_2H)^{(1)}$  as described above, and **31b** was obtained as crystals with 99% ee in 23% isolated yield.

The propiophenone derivatives **31a**, **b** were converted to the corresponding diols **36a**, **b** according to method c as shown in Chart 6. Thus, **31a**, **b** were allowed to react with iso-PrOSi(Me<sub>2</sub>)CH<sub>2</sub>MgCl to give **34a**, **b** in 60—66% yield, and the subsequent oxidative cleavage with H<sub>2</sub>O<sub>2</sub> afforded **36a**, **b** in 69—78% yield. Compounds **36a**, **b** were converted to the corresponding mesylates **38a**, **b** in 91—99% yield, followed by treatment with 1*H*-1,2,4-triazole in the presence of K<sub>2</sub>CO<sub>3</sub> to obtain the imidazolones **25a**, **b** in 46—47% isolated yield.

We then undertook the synthesis of 2-fluorophenyl analogs

(26a, b) using to substantially the same method as above, *i.e.*, 42 $\rightarrow$ 32a, b<sup>12)</sup> $\rightarrow$ 35a, b $\rightarrow$ 37a, b $\rightarrow$ 39a, b $\rightarrow$ 26a, b. In this synthesis, the starting triflate 42 was prepared from the corresponding (*S*)-2-hydroxypropiophenone derivative 40<sup>13)</sup> as follows: 40 $\rightarrow$ 41 $\rightarrow$ 42.

All imidazolones, 25a, b and 26a, b, were subjected to catalytic hydrogenation over palladium carbon (Pd–C) as described in our previous report<sup>1)</sup> to obtain the corresponding imidazolidinones, 27a, b and 28a, b. Furthermore, the imidazolidinones could be prepared by hydrogenation of the diols followed by mesylation and subsequent reaction with 1*H*-1,2,4-triazole, as exemplified by the synthesis of 28a, *i.e.*,  $37a \rightarrow 43 \rightarrow 44 \rightarrow 28a$ .

The imidazolone (**25a**, **b**, **26a**, **b**) and imidazolidinone (**27a**, **b**, **28a**, **b**) derivatives obtained above were identical to our authentic samples.<sup>1)</sup>

In conclusion, we established an efficient and practical route for the synthesis of the optically active antifungal triazole, TAK-187, starting from the esters of (S)-lactic acid. Furthermore, this stereocontrolled synthesis could be applied to the preparation of other azolone-based antifungal triazoles such as the imidazolones (**25a**, **b**, **26a**, **b**) and imidazolidinones (**27a**, **b**, **28a**, **b**).

## Experimental

Melting points were determined using a Yanagimoto melting point apparatus and are uncorrected. IR spectra were measured with a JASCO IR-810 spectrometer. <sup>1</sup>H-NMR spectra were recorded on a Varian Gemini-200 spectrometer with tetramethylsilane as an internal standard. The following abbreviations are used: s=singlet, d=doublet, t=triplet, m=multiplet, br=broad. The secondary ion mass spectra (SI-MS) were measured with a Hitachi M-80A mass spectrometer. The optical rotations were recorded with a JASCO DIP-181 or DIP-370 digital polarimeter.

Reactions were run at room temperature unless otherwise noted and followed by TLC on Silica gel 60  $F_{254}$  precoated TLC plates (E. Merck) or by HPLC using an octadecyl silica (ODS) column (A-303, 4.6 mm i.d.× 250 mm, YMC Co., Ltd.). Standard work-up procedures were as follows. The reaction mixture was partitioned between the indicated solvent and water. Organic extracts were combined and washed in the indicated order



Chart 6

using the following aqueous solutions; water, hydrochloric acid (HCl), 5% aqueous sodium bicarbonate solution (aqueous NaHCO<sub>3</sub>) and saturated NaCl solution (brine). Extracts were dried over MgSO<sub>4</sub>, filtered and evaporated *in vacuo*.

Chromatographic separations were carried out on Silica gel 60 (0.063–0.200 mm, E. Merck) using the indicated eluents.

The ee of the compounds prepared was determined by HPLC using a chiral column (Chiralcel OF, Chiralcel OB and Chiralpak AD,  $4.6 \text{ mm i.d.} \times 250 \text{ mm}$ , Daicel Chemical Industries, Tokyo, Japan) under the indicated conditions [column; mobile phase; flow rate; detection]. The corresponding racemate used in this analysis was prepared independently.

**Benzyl** (2*S*)-2-Trifluoromethanesulfonyloxypropanoate (12) Tf<sub>2</sub>O (50 g) was added dropwise to a stirred solution of 11a (29 g)<sup>14</sup> and iso-Pr<sub>2</sub>NEt (22.8 g) in dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>, 300 ml) over a period of 15 min at around -55 °C. The resulting mixture was stirred for 10 min at around -25 °C, and then diluted with CH<sub>2</sub>Cl<sub>2</sub> (200 ml). The whole was worked up (CH<sub>2</sub>Cl<sub>2</sub>; water, aqueous NaHCO<sub>3</sub>, brine) and purified by silica gel column chromatography (CH<sub>2</sub>Cl<sub>2</sub>–hexane, 1 : 1, v/v) to give 12 (44.2 g, 88%) as a colorless oil. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.70 (3H, d, *J*=7 Hz), 5.26

## (1H, q, J=7 Hz), 5.26 (2H, s), 7.31 (5H, s).

Benzyl (2R)-2-[4-[4-(2,2,3,3-Tetrafluoropropoxy)phenyl]-4,5-dihydro-5-oxo-1*H*-1,2,4-triazol-1-vl]propanoate (13a) A mixture of H-Taz (18 g), sodium hydride (NaH, 60% in oil, 2.52 g) and DMF (180 ml) was stirred for 40 min. The resulting solution was added dropwise to a solution of 12 (20 g)in THF (240 ml) over a period of 40 min at around -35 °C under a nitrogen atmosphere. After the mixture had been stirred for 10 min at around -30 °C, AcOH (10 ml) was added. The whole was worked up [AcOEt-iso-Pr2O; water, 2 N HCl, brine] and purified by silica gel column chromatography (AcOEt-hexane, 1:2, v/v) to give 13a (24g, 82%) as a colorless oil. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 1.76 (3H, d, J=7.4 Hz), 4.38 (2H, tt, J=11.8, 1.4 Hz), 5.08 (1H, q, J=7.4 Hz), 5.20 (2H, s), 6.06 (1H, tt, J=53, 4.6 Hz), 7.02 (2H, dt, J=9, 2.2 Hz), 7.33 (5H, s), 7.47 (2H, dt, J=9, 2.2 Hz), 7.66 (1H, s).  $[\alpha]_{D}^{23}$ +63.0° [c=1.43, methanol (MeOH)]. IR (neat): 1746, 1707, 1557, 1516, 1456, 1225 cm<sup>-1</sup>. The ee was determined to be 93% [column, Chiralcel OF; mobile phase, hexane-isopropyl alcohol (iso-PrOH), 4:1; flow rate, 1 ml/min; detection, UV at 262 nm].

(2R)-2-[4-[4-(2,2,3,3-Tetrafluoropropoxy)phenyl]-4,5-dihydro-5-oxo-1H-1,2,4-triazol-1-yl]propanoic Acid (9) A solution of 13a (24 g) in ethanol (EtOH, 500 ml) was hydrogenated over 10% Pd–C (50% wet, 2.5 g) under atmospheric pressure. After absorption of hydrogen stopped, the catalyst was removed by filtration and the filtrate was evaporated *in vacuo*. The residue was crystallized from EtOH–iso-Pr<sub>2</sub>O to give **9** (17.3 g, 90%) as colorless prisms. mp 162—165 °C. *Anal.* Calcd for C<sub>14</sub>H<sub>13</sub>F<sub>4</sub>N<sub>3</sub>O<sub>4</sub>: C, 46.29; H, 3.61; N, 11.57. Found: C, 46.37; H, 3.67; N, 11.53. <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$ : 1.56 (3H, d, *J*=7.4 Hz), 4.65 (2H, tt, *J*=13.4, 1.6 Hz), 4.85 (1H, q, *J*=7.4 Hz), 6.69 (1H, tt, *J*=52, 5.5 Hz), 7.20 (2H, dt, *J*=9, 2.2 Hz), 7.64 (2H, dt, *J*=9, 2.2 Hz), 8.45 (1H, s).  $[\alpha]_{D3}^{23}$  +59.3° (*c*=1.0, MeOH).

(25)-2'4'-Difluoro-2-trifluoromethanesulfonyloxypropiophenone (19) Tf<sub>2</sub>O (25.9 ml) was added dropwise to a stirred solution of (2*S*)-2',4'-difluoro-2-hydroxypropiophenone (10: 26.01 g)<sup>7)</sup> and iso-Pr<sub>2</sub>NEt (19.9 g) in CH<sub>2</sub>Cl<sub>2</sub> (300 ml) over a period of 20 min at -60 °C under a nitrogen atmosphere. The resulting mixture was stirred for 30 min at -30°C. The whole was chromatographed on silica gel. Elution with CH<sub>2</sub>Cl<sub>2</sub>–hexane (1: 1, v/v) gave 19 (39.21 g, 88%) as a pale yellow oil. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.73 (3H, dd, *J*=7, 1.6 Hz), 5.93 (1H, q, *J*=7 Hz), 6.90—7.12 (2H, m), 8.03 (1H, dt, *J*=6.4, 8.6 Hz). [ $\alpha$ ]<sub>D</sub><sup>23</sup> +29.2° (*c*=1.12, MeOH).

**2-[(1***R***)-2-(2,4-Difluorophenyl)-2-oxo-1-methylethyl]-4-[4-(2,2,3,3tetrafluoropropoxy)phenyl]-3(2***H***,4***H***)-1,2,4-triazolone (8) [Route A] Five drops of DMF were added to a solution of 9 (1 g) and (COCl)<sub>2</sub> (2.5 ml) in CH<sub>2</sub>Cl<sub>2</sub> (20 ml). The resulting mixture was stirred for 2 h and then evaporated** *in vacuo* **to give the chloride 14 as a pale yellow oil. To a solution of this oil in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) were added 1,3-difluorobenzene (2.5 ml) and AlCl<sub>3</sub> (powder, 1.5 g). The resulting mixture was heated under reflux for 8 h with stirring. After cooling, the whole was added to ice-water (50 ml) and worked up (AcOEt–iso-Pr<sub>2</sub>O; 1 N HCl, brine). The residue was chromatographed on silica gel using AcOEt–hexane–AcOH (1:2:0.03, v/v) as an eluent. The eluate was washed with water, dried over MgSO<sub>4</sub> and evaporated** *in vacuo* **to give 8 (0.77 g, 61% based on 9) as a pale yellow oil with 93% ee [column, Chiralpak AD; mobile phase, hexane–iso-PrOH, 1:1; flow rate, 1 ml/mi; detection, UV at 262 nm].** 

The optical purity of the chloride **14** was checked by the following method: compound **14** was converted to the corresponding methyl ester **15** by reaction with MeOH. Compound **15**: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.75 (3H, d, J=7.2 Hz), 3.77 (3H, s), 4.38 (2H, tt, J=11.8, 1.4 Hz), 5.05 (1H, q, J=7.2 Hz), 6.07 (1H, tt, J=53, 4.8 Hz), 7.04 (2H, dt, J=9, 2.2 Hz), 7.53 (2H, dt, J=9, 2.2 Hz), 7.69 (1H, s). The ee of **15** was determined to be 93% [column, Chiralpak AD; mobile phase, hexane–iso-PrOH, 1:1; flow rate, 1 ml/min; detection, UV at 262 nm].

[Route B] A mixture of H-TAZ (6.12 g), NaH (60% in oil, 0.8 g) and MP (60 ml) was stirred for 3 h. The resulting solution was cooled in an ice bath and added dropwise to a solution of **19** (7.32 g) in THF (180 ml) over a period of 25 min at -50 °C under a nitrogen atmosphere. After stirring for 30 min at -30 °C, the whole was diluted with a mixture of AcOH (10 ml) and AcOEt (500 ml) and worked up (AcOEt; water, 0.5 N HCl, brine). The residue was purified by silica gel column chromatography (AcOEt–hexane–AcOH, 1:3:0.04, v/v). The eluate containing the more polar product was washed with water, dried over MgSO<sub>4</sub> and evaporated *in vacuo* to give **8** (6.01 g, 62% based on H-TAz) as a pale yellow oil with 96% ee [column, Chiralpak AD; mobile phase, hexane–iso-PrOH, 1:1; flow rate, 1 ml/min; detection, UV at 262 nm].

The eluate containing the less polar product was washed with water, dried over MgSO<sub>4</sub> and evaporated *in vacuo* to give **20** as colorless crystals. mp 130—132 °C. *Anal.* Calcd for  $C_{20}H_{13}F_6N_3O_3$ : C, 52.30; H, 3.29; N, 9.15. Found: C, 52.52; H, 3.27; N, 9.13. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.24 (3H, d, *J*= 5.4 Hz), 4.37 (2H, tt, *J*=11.8, 1.4 Hz), 4.52 (1H, q, *J*=5.4 Hz), 6.06 (1H, tt, *J*=53, 4.8 Hz), 6.79—7.05 (2H, m), 7.02 (2H, dt, *J*=9, 2.2 Hz), 7.45 (2H, dt, *J*=9, 2.2 Hz), 7.62 (1H, s), 7.68 (1H, dt, *J*=6.4, 8.6 Hz). SI-MS (*m/z*): 460 (MH<sup>+</sup>).

Compound **8**, obtained *via* routes A and B, was dissolved in twice the amount (v/w) of iso-Pr<sub>2</sub>O and cooled in an ice-bath. The crystalline precipitate was removed by filtration and the filtrate was evaporated *in vacuo* to give **8** with higher optical purity, 97—98% ee [column, Chiralpak AD; mobile phase, hexane–iso-PrOH, 1:1; flow rate, 1 ml/min; detection, UV at 262 nm]. *Anal.* Calcd for C<sub>20</sub>H<sub>15</sub>F<sub>6</sub>N<sub>3</sub>O<sub>3</sub>: C, 52.30; H, 3.29; N, 9.15. Found: C, 52.41; H, 3.48; N, 8.89. IR (neat): 1710, 1610, 1560, 1520, 1240, 1100 cm<sup>-1.</sup> <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.75 (3H, d, J=7 Hz), 4.38 (2H, tt, J=11.8, 1.4 Hz), 5.70 (1H, q, J=7 Hz), 6.06 (1H, tt, J=53, 4.8 Hz), 6.85—7.05 (2H, m), 7.02 (2H, dt, J=9, 2.4 Hz), 7.49 (2H, dt, J=9, 2.4 Hz), 7.68 (1H, s), 7.94 (1H, dt, J=6.4, 8.6 Hz). [ $\alpha$ ]<sub>23</sub><sup>23</sup> +69.8° (*c*=1.2, MeOH).

 $\label{eq:2-[(1R,2S)-2-(2,4-Diffuorophenyl)-2-hydroxy-1-methyl-3-butenyl]-4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2H,4H)-1,2,4-triazolone (21) A solution of vinylmagnesium bromide in THF (1 m solution, 5 ml) was added$ 

dropwise to a solution of **8** (1.16 g, 98% ee) in THF (20 ml) over a period of 13 min at -60 °C. After stirring the mixture for 2 h at -30 °C, a saturated aqueous solution (5 ml) of ammonium chloride (NH<sub>4</sub>Cl) was added. The whole was worked up (AcOEt–iso-Pr<sub>2</sub>O; water, brine) and purified by silica gel column chromatography (AcOEt–hexane, 1:3 $\rightarrow$ 1:2, v/v) to give **21**, which was crystallized from iso-Pr<sub>2</sub>O–hexane to obtain colorless needles (0.81 g, 66%). mp 104—106 °C. *Anal.* Calcd for C<sub>22</sub>H<sub>19</sub>F<sub>6</sub>N<sub>3</sub>O<sub>3</sub>: C, 54.21; H, 3.93; N, 8.62. Found: C, 54.24; H, 3.91; N, 8.47. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.26 (3H, d, *J*=7 Hz), 4.39 (2H, tt, *J*=11.8, 1.4 Hz), 4.93 (1H, s), 5.03 (1H, d, *J*=9, 51Hz), 5.11 (1H, q, *J*=7 Hz), 5.43 (1H, dt, *J*=17.2, 1.6 Hz), 6.06 (1H, tt, *J*=53, 4.8 Hz), 6.45—6.58 (1H, m), 6.75—6.96 (2H, m), 7.04 (2H, dt, *J*=9, 2.8 Hz), 7.48 (2H, dt, *J*=9, 2.8 Hz), 7.66 (1H, s), 7.75—7.88 (1H, m). [ $\alpha$ ]<sup>23</sup><sub>2</sub> -26.0° (*c*=0.54, MeOH).

**2-**[(1*R*,2*S*)-2-(2,4-Difluorophenyl)-2-formyl-2-hydroxy-1-methylethyl]-4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2*H*,4*H*)-1,2,4-triazolone (22) O<sub>3</sub> was bubbled through a solution of **21** (0.6 g) in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) for 20 min at -60 °C, and then nitrogen gas was bubbled for 10 min. Me<sub>2</sub>S (0.6 ml) was added to the mixture and the whole was stirred until the temperature of the mixture reached to 0 °C, and then worked up (AcOEt; water, brine). The residue was crystallized from iso-Pr<sub>2</sub>O-hexane to give **22** as colorless prisms (0.46 g, 76%). mp 134—136 °C. *Anal.* Calcd for C<sub>21</sub>H<sub>17</sub>F<sub>6</sub>N<sub>3</sub>O<sub>4</sub>: C, 51.54; H, 3.50; N, 8.59. Found: C, 51.39; H, 3.50; N, 8.42. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) &: 1.35 (3H, d, J=7Hz), 4.38 (2H, tt, J=11.8, 1.4Hz), 4.81 (1H, s), 5.42 (1H, q, J=7Hz), 6.06 (1H, tt, J=53, 4.8Hz), 6.84—7.10 (2H, m), 7.03 (2H, dt, J=9, 2.2Hz), 7.47 (2H, dt, J=9, 2.2Hz), 7.66 (1H, s), 7.73—7.85 (1H, m), 9.97 (1H, m).

2-[(1R,2S)-2-(2,4-Difluorophenyl)-2-hydroxy-3-(isopropoxydimethylsilyl)-1-methylpropyl]-4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2H,4H)-**1,2,4-triazolone (23)** A mixture of chloromethylisopropoxydimethylsilane [iso-PrOSi(Me<sub>2</sub>)CH<sub>2</sub>Cl, 18.1 g], magnesium (Mg, turnings, 2.65 g) and THF (100 ml) was heated at 45-50 °C. A few chips of Mg activated with methyl iodide (CH<sub>3</sub>I) were added, and the resulting mixture was heated for 3 h at 45—50 °C and then cooled in an ice bath. To this ice-cooled mixture was added dropwise a solution of 8 (10.5 g, 97% ee) in THF (50 ml) over the period of 20 min. After stirring for 20 min, the mixture was diluted with saturated aqueous NH<sub>4</sub>Cl (50 ml) and water (50 ml) at 0 °C. The whole was worked up (AcOEt-iso-Pr<sub>2</sub>O; brine) and the residue was purified by silica gel column chromatography (AcOEt-hexane, 1:2, v/v), followed by recrystallization from iso-Pr<sub>2</sub>O-hexane to give 23 (11.03 g, 82%) as colorless needles. The ee of compound 23 was determined to be >99% [column, Chiralpak AD; mobile phase, hexane-iso-PrOH, 1:1; flow rate; 1 ml/min; detection, UV at 262 nm]. mp 125-126 °C. Anal. Calcd for C<sub>26</sub>H<sub>31</sub>F<sub>6</sub>N<sub>3</sub>O<sub>4</sub>Si: C, 52.78; H, 5.28; N, 7.10. Found: C, 52.82; H, 5.30; N, 6.96. <sup>1</sup>H-NMR  $(DMSO-d_6) \delta$ : -0.35 (3H, s), -0.16 (3H, s), 0.93 (3H, d, J=6 Hz), 0.96 (3H, d, J=6 Hz), 1.03—1.11 (4H, m), 1.62 (1H, dd, J=15, 2 Hz), 3.79 (1H, quintet, J=6 Hz), 4.62 (1H, q, J=7 Hz), 4.66 (2H, t, J=13.4 Hz), 5.00 (1H, s), 6.69 (1H, tt, J=52, 5 Hz), 7.07-7.22 (2H, m), 7.22 (2H, d, J=9 Hz), 7.66 (2H, d, J=9Hz), 7.72 (1H, dt, J=0.8, 9Hz), 8.50 (1H, s). IR (KBr): 3400, 1710, 1618, 1560, 1517, 1498 cm<sup>-1</sup>.  $[\alpha]_{\rm D}^{23}$  +2.8° (*c*=1.0, MeOH).

**2-[(1***R***,2***S***)-2-(2,4-Difluorophenyl)-2,3-dihydroxy-1-methylpropyl]-4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2***H***,4***H***)-1,2,4-triazolone (7) (Method a) A solution of NalO<sub>4</sub> (321 mg) in water (2 ml) and OsO<sub>4</sub> (3 mg) were added to a solution of <b>21** (244 mg) in MeOH (5.7 ml). The resulting mixture was dissolved in MeOH (8 ml), and then NaBH<sub>4</sub> (20 mg) was added to the solution. After stirring for 30 min, the whole was worked up (AcOEt; water, brine). The residue was chromatographed on silica gel and elution with AcOEt–hexane (1 :  $2\rightarrow$ 1 : 1, v/v) gave 7 (29 mg, 12%) as colorless powder.

(Method b) NaBH<sub>4</sub> (74 mg) was added to an ice-cooled solution of **22** (300 mg) in MeOH (9 ml). After stirring for 30 min, the whole was worked up (AcOEt;  $1 \times$  HCl, water, brine). The residue was purified by silica gel column chromatography (AcOEt–hexane, 1:1, v/v) to give **7** as colorless prisms (165 mg, 55%).

(Method c) A 30% aqueous solution of  $H_2O_2$  (19.2 ml) and NaHCO<sub>3</sub> (1.57 g) were added to a solution of **23** (11 g) in MeOH–THF (1:1, v/v, 90 ml). The mixture was heated for 90 min at 70–80 °C and, after cooling, the whole was worked up (AcOEt–iso-Pr<sub>2</sub>O; water, aqueous solution of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, brine). The residue was crystallized from iso-Pr<sub>2</sub>O to give **7** as colorless prisms (8.27 g, 90%). The mother liquor of the above crystallization was evaporated and the residue was purified by silica gel column chromatography (AcOEt–hexane, 1:1, v/v) to obtain an additional amount of **7** as colorless prisms (0.33 g, 4%).

Compound 7: mp 144—145 °C. Anal. Calcd for C<sub>21</sub>H<sub>19</sub>F<sub>6</sub>N<sub>3</sub>O<sub>4</sub>: C, 51.33;

The ee of compound 7 was determined to be >99% [column, Chiralpak AD; mobile phase, hexane–iso-PrOH, 1:1; flow rate, 1 ml/min; detection, UV at 262 nm].

**2-[(1***R***,2***S***)-2-(2,4-Difluorophenyl)-2-hydroxy-3-methanesulfonyloxy-1methylpropyl]-4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2***H***,4***H***)-1,2,4triazolone (24) Methanesulfonyl chloride (MsCl, 2.89 g) and triethylamine (Et<sub>3</sub>N, 2.54 g) were added to a stirred solution of 7 (8.26 g) in AcOEt (100 ml) at 0 °C. The resulting mixture was stirred for 30 min at 0 °C and then worked up (AcOEt; water, brine) to give 24 (10 g, quantitative) as a colorless oil. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) \delta: 1.27 (3H, d, J=7 Hz), 2.91 (3H, s), 4.40 (2H, tt, J=11.8, 1.6 Hz), 4.49—4.59 (2H, m), 5.05 (1H, q, J=7 Hz), 5.34 (1H, s), 6.06 (1H, tt, J=53, 4.8 Hz), 6.80—7.05 (2H, m), 7.06 (2H, d, J= 9.2 Hz), 7.53 (2H, d, J=9.2 Hz), 7.72 (1H, s), 7.78—7.92 (1H, m).** 

**2-[(1***R***,2***R***)-2-(2,4-Difluorophenyl)-2-hydroxy-1-methyl-3-(1***H***-1,2,4-triazol-1-yl)propyl]-4-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-3(2***H***,4***H***)-1,2,4-triazolone (TAK-187) 1***H***-1,2,4-Triazole (5.7 g) and K<sub>2</sub>CO<sub>3</sub> (23.2 g) were added to a solution of <b>24** (10 g) in DMF (180 ml). The resulting mixture was stirred for 5 h at 90 °C and then concentrated to a volume of *ca*. 100 ml *in vacuo*. The whole was worked up (AcOEt–iso-Pr<sub>2</sub>O; water, 1 N HCl, brine) and the residue was chromatographed on silica gel (hexane– AcOEt; 3:4→AcOEt, v/v) to give TAK-187 as a colorless solid, which was recrystallized from AcOEt–iso-Pr<sub>2</sub>O to afford colorless powdery crystals (7.3 g, 80%) with >99% ee [column, Chiralpak AD; mobile phase, hexane– iso-PrOH, 1:1; flow rate; 1 ml/min; detection, UV at 262 nm]. This product was identical to TAK-187 prepared from methyl (*R*)-lactate (1) in our preceding report<sup>2)</sup> upon direct comparison with the authentic sample.

Benzyl (2R)-2-[3-[4-(2,2,3,3-Tetrafluoropropoxy)phenyl]-2,3-dihydro-2-oxo-1H-imidazol-1-yl]propanoate (29) A mixture of H-IMZ (R=OCH2- $CF_2CF_2H,\,4\,g),\,NaH$  (60% in oil, 0.55 g) and MP (30 ml) was stirred for 30 min. The resulting solution was added dropwise to a solution of 12 (5.2 g) in THF (80 ml) over a period of 10 min at around -45 °C under a nitrogen atmosphere. After stirring the mixture for 50 min at around -30 °C, AcOH (9.6 ml) was added. The whole was worked up (AcOEt; water, 1 N HCl, brine) and the residue was purified by silica gel column chromatography (AcOEt-hexane, 3:2, v/v) to give 29 (5.3 g, 85%) as colorless powdery crystals. mp 75-76 °C (recrystallized from AcOEt-hexane). Anal. Calcd for C<sub>22</sub>H<sub>20</sub>F<sub>4</sub>N<sub>2</sub>O<sub>4</sub>: C, 58.41; H, 4.46; N, 6.19. Found: C, 58.16; H, 4.42; N, 6.24. <sup>1</sup>H-NMR (CDCl<sub>2</sub>)  $\delta$ : 1.63 (3H, d, J=7.4 Hz), 4.38 (2H, tt, J=11.8, 1.4 Hz), 5.09 (1H, q, J=7.4 Hz), 5.20 (2H, s), 6.07 (1H, tt, J=53, 4.6 Hz), 6.50 (1H, d, J=3 Hz), 6.57 (1H, d, J=3 Hz), 6.97 (2H, dt, J=9, 2.2 Hz), 7.35 (5H, s), 7.53 (2H, dt, J=9, 2.2 Hz). IR (KBr): 1742, 1692, 1609, 1516, 1464, 1441, 1271  $cm^{-1}$ 

(2*R*)-2-[3-[4-(2,2,3,3-Tetrafluoropropoxy)phenyl]-2,3-dihydro-2-oxo-1*H*-imidazol-1-yl]propanoic Acid (30) Hydrogenolysis of 29 (5.1 g) was carried out as described in the synthesis of 9 to give 30, which was recrystallized from EtOH–iso-Pr<sub>2</sub>O to obtain colorless prisms (3.3 g, 81%). mp 149—151 °C. *Anal.* Calcd for C<sub>15</sub>H<sub>14</sub>F<sub>4</sub>N<sub>2</sub>O<sub>4</sub>: C, 49.73; H, 3.90; N, 7.73. Found: C, 49.64; H, 3.93; N, 7.72. <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>)  $\delta$ : 1.54 (3H, d, *J*=7.2 Hz), 4.55—4.77 (3H, m), 6.69 (1H, tt, *J*=52, 5.5 Hz), 6.84 (1H, d, *J*= 3 Hz), 7.02 (1H, d, *J*=3 Hz), 7.13 (2H, d, *J*=9 Hz), 7.66 (2H, d, *J*=9 Hz).

(25)-2'-Fluoro-2-hydroxypropiophenone (41) Pyridinium *p*-toluenesulfonate (1.28 g) was added to a solution of (25)-2'-fluoro-2-(3,4,5,6tetrahydro-2*H*-pyran-2-yloxy)propiophenone (40, 25.5 g)<sup>13)</sup> in EtOH (200 ml). The resulting mixture was stirred for 2.5 h at 55 °C and then concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt–hexane, 1:9 $\rightarrow$ 1:5, v/v) to give 41 (16.4 g, 97%) as a colorless oil with 98% ee [column, Chiralcel OB; mobile phase, hexane–iso-PrOH, 4:1; flow rate; 1 ml/min; detection, UV at 262 nm]. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.41 (3H, dd, *J*=7, 1.4 Hz), 3.78 (1H, d, *J*=6 Hz), 4.98—5.15 (1H, m), 7.12—7.36 (2H, m), 7.54—7.68 (1H, m), 7.90—8.00 (1H, m). IR (neat): 1690 cm<sup>-1</sup>.

(2S)-2'-Fluoro-2-trifluoromethanesulfonyloxypropiophenone (42) Compound 41 (3.36 g) was allowed to react with Tf<sub>2</sub>O (4.03 ml) as described in the synthesis of 19 to give the triflate 42 (5.3 g, 88%) as a pale yellow oil. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.73 (3H, dd, *J*=7, 1.6 Hz), 6.49 (1H, q, *J*=7 Hz), 7.15—7.38 (2H, m), 7.58—7.72 (1H, m), 7.97 (1H, dt, *J*=7.6, 1.8 Hz).

1-[(1R)-2-(2,4-Difluorophenyl)-2-oxo-1-methylethyl]-3-[4-(2,2,3,3-

**tetrafluoropropoxy)phenyl]-2(1***H***,3***H***)-imidazolone (31a) [Route A] Compound 30 (1.5 g) was converted to the chloride and then allowed to react with 1,3-difluorobenzene in the presence of AlCl\_3 in a manner similar to that described in the synthesis of 8. The product was purified by silica gel column chromatography (AcOEt–hexane–AcOH, 1:2:0.03, v/v) and the eluate was washed with water, dried over MgSO<sub>4</sub> and evaporated** *in vacuo***. The residue was crystallized from iso-Pr<sub>2</sub>O to give <b>31a** as colorless crystals (0.25 g, 13%).

[Route B] A mixture of H-IMZ (R=OCH<sub>2</sub>CF<sub>2</sub>CF<sub>2</sub>H, 6.58 g), NaH (60% in oil, 0.86 g) and MP (45 ml) was stirred for 15 min. The resulting solution was cooled in an ice bath and added dropwise to a solution of 19 (7.98 g) in THF (150 ml) over a period of 15 min at -40 °C under a nitrogen atmosphere. Then, the mixture was stirred for  $10 \min$  at  $-20 \degree$ C. AcOH (16 ml) and AcOEt (200 ml) were added to the mixture and the whole was worked up (AcOEt; water, 0.5 N HCl, brine). The residue was purified by silica gel column chromatography (AcOEt-hexane-AcOH, 1:2:0.08, v/v) and the eluate containing the more polar product was washed with water, dried over MgSO<sub>4</sub> and evaporated *in vacuo* to give **31a** (4.7 g, 49% based on H-IMZ) as a solid, which was recrystallized from iso-Pr<sub>2</sub>O to obtain colorless crystals (3.5 g) with 99% ee [column, Chiralpak AD; mobile phase, hexane-iso-PrOH, 1:1; flow rate, 1 ml/min; detection, UV at 262 nm]. mp 70-71 °C. Anal. Calcd for C<sub>21</sub>H<sub>16</sub>F<sub>6</sub>N<sub>2</sub>O<sub>3</sub>: C, 55.03; H, 3.52; N, 6.11. Found: C, 54.90; H, 3.65; N, 6.13. IR (KBr): 1690, 1670, 1610, 1520, 1370, 1100, 980, 830 cm<sup>-1</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.62 (3H, d, J=7 Hz), 4.35 (2H, tt, J=11.8, 1.4 Hz), 5.74 (1H, q, J=7 Hz), 6.07 (1H, tt, J=53, 4.8 Hz), 6.56 (2H, s), 6.57-7.05 (2H, m), 6.96 (2H, dt, J=9, 2.4 Hz), 7.52 (2H, dt, J=9, 2.4 Hz), 7.94—8.05 (1H, m).  $[\alpha]_{\rm D}^{20}$  +10.5° (c=1.0, MeOH).

Compound 31b and the 2-fluoro analogs 32a, b were prepared from 19 and 42, respectively, by reaction with H-IMZ (R=OCH<sub>2</sub>CF<sub>2</sub>CF<sub>2</sub>H or OCF<sub>2</sub>CF<sub>2</sub>H) as described above. Compound **31b** (23% yield): mp 71-72 °C (recrystallized from hexane-iso-Pr<sub>2</sub>O). Optical purity, 99% ee [column, Chiralpak AD; mobile phase, hexane-iso-PrOH, 1:1; flow rate; 1 ml/min; detection, UV at 262 nm]. Anal. Calcd for  $C_{20}H_{14}F_6N_2O_3$ : C, 54.06; H, 3.18; N, 6.30. Found: C, 53.81; H, 3.19; N, 6.41. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 1.63 (3H, d, J=7 Hz), 5.74 (1H, q, J=7 Hz), 5.90 (1H, tt, J=53, 2.8 Hz), 6.58 (1H, d, J=3 Hz), 6.62 (1H, d, J=3 Hz), 6.86-7.05 (2H, m), 7.26 (2H, dt, J=9, 2.4 Hz), 7.53 (2H, dt, J=9, 2.4 Hz), 7.93-8.05 (1H, m). IR (KBr): 1690, 1670, 1610, 1510, 1370, 1100, 980, 850 cm<sup>-1</sup>.  $[\alpha]_{D}^{25}$  +6.9° (*c*=1.0, MeOH). Compound 32a (41% yield): mp 71-73 °C (recrystallized from iso-Pr<sub>2</sub>O). Optical purity, 98.8% ee [column, Chiralpak AD; mobile phase, hexane-iso-PrOH, 1:1; flow rate; 1 ml/min; detection, UV at 262 nm]. Anal. Calcd for C<sub>21</sub>H<sub>17</sub>F<sub>5</sub>N<sub>2</sub>O<sub>2</sub>: C, 57.28; H, 3.89; N, 6.36. Found: C, 57.34; H, 3.78; N, 6.12. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.63 (3H, d, J=7.2 Hz), 4.35 (2H, tt, J=11.8, 1.4 Hz), 5.80 (1H, q, J=7.2 Hz), 6.07 (1H, tt, J=53, 4.6 Hz), 6.57 (2H, s), 6.97 (2H, d, J=9 Hz), 7.13-7.30 (2H, m), 7.48-7.64 (1H, m), 7.53 (2H, d, J=9 Hz), 7.93 (1H, dt, J=7.6, 1.8 Hz). IR (KBr): 1712, 1679, 1608, 1519, 1438,  $1267 \text{ cm}^{-1}$ .  $[\alpha]_{D}^{23} + 8.5^{\circ}$  (c=1.0, MeOH). Compound **32b** (34%) yield): mp 78-79 °C (recrystallized from iso-Pr<sub>2</sub>O). Optical purity, 99.9% ee [column, Chiralpak AD; mobile phase, hexane-iso-PrOH, 1:1; flow rate; 1 ml/min; detection, UV at 262 nm]. Anal. Calcd for C<sub>20</sub>H<sub>15</sub>F<sub>5</sub>N<sub>2</sub>O<sub>3</sub>: C, 56.34; H, 3.55; N, 6.57. Found: C, 56.20; H, 3.61; N, 6.41. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 1.63 (3H, d, *J*=7 Hz), 5.79 (1H, q, *J*=7 Hz), 5.92 (1H, tt, *J*=53, 3 Hz), 6.60 (1H, d, J=3 Hz), 6.63 (1H, d, J=3 Hz), 7.13-7.30 (2H, m), 7.26 (2H, d, J=9Hz), 7.51-7.64 (1H, m), 7.63 (2H, d, J=9Hz), 7.93 (1H, dt, J=8, 2 Hz). IR (KBr): 1690, 1673, 1608, 1512, 1450, 1438 cm<sup>-1</sup>.  $[\alpha]_{D}^{23}$  $+4.6^{\circ}$  (c=1.0, MeOH).

For the synthesis of both **31a** and **31b**, the eluate containing the less polar product was washed with water, dried over MgSO<sub>4</sub> and evaporated *in vacuo* to give the *O*-substituted isomers, **33a** and **33b**, as a pale yellow oil. Compound **33a**: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.48 (3H, d, *J*=5.4 Hz), 3.59 (1H, q, *J*= 5.4 Hz), 4.34 (2H, t, *J*=12 Hz), 6.05 (1H, tt, *J*=53, 4.8 Hz), 6.55 (1H, d, *J*= 3 Hz), 6.67 (1H, d, *J*=3 Hz), 6.76–7.02 (2H, m), 6.95 (2H, d, *J*=8.8 Hz), 7.58–7.70 (1H, m). Compound **33b**: <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.48 (3H, d, *J*=4.8 Hz), 3.60 (1H, q, *J*=4.8 Hz), 5.90 (1H, tt, *J*=53, 2.6 Hz), 6.60 (1H, d, *J*=3.2 Hz), 6.70 (1H, d, *J*=3.2 Hz), 6.77–7.05 (2H, m), 7.24 (2H, d, *J*=9 Hz), 7.60 (2H, d, *J*=9 Hz), 7.48–7.69 (1H, m).

**1-[(1***R***,2***S***)-2-(2,4-Difluorophenyl)-2-hydroxy-3-(isopropoxydimethylsilyl)-1-methylpropyl]-3-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-2(1***H***,3***H***)imidazolone (34a) Compound 31a (3.9 g) was allowed to react with iso-PrOSi(Me<sub>2</sub>)CH<sub>2</sub>MgCl as described in the synthesis of 23 to give 34a, which was recrystallized from hexane–iso-Pr<sub>2</sub>O to obtain colorless needles (1.42 g, 66%). mp 131—132 °C.** *Anal.* **Calcd for C\_{27}H\_{32}F\_6N\_2O\_4Si: C, 54.91; H, 5.46; N, 4.74. Found: C, 54.65; H, 5.32; N, 4.74. <sup>1</sup>H-NMR (DMSO-***d***<sub>6</sub>) δ: -0.23 (6H, s), 1.02 (6H, d,** *J***=6Hz), 1.00—1.09 (4H, m), 1.59 (1H, dd,** *J***=15,**  2 Hz), 3.84 (1H, quintet, J=6 Hz), 4.61—4.74 (3H, m), 5.32 (1H, br), 6.75 (1H, tt, J=53, 6 Hz), 6.84 (1H, d, J=3 Hz), 7.09 (1H, d, J=3 Hz), 7.15— 7.32 (2H, m), 7.20 (2H, d, J=9 Hz), 7.68—7.81 (1H, m), 7.75 (2H, d, J=9 Hz). IR (KBr): 3400, 1670, 1510, 1430, 1250, 1110, 1010, 830 cm<sup>-1</sup>.  $[\alpha]_{\rm D}^{20}$  +14.5° (c=1.0, MeOH).

Compound 34b and the 2-fluoro analogs 35a, b were prepared from 31b and 32a, b, respectively, as described above. Compound 34b (60% yield): mp 123-125 °C (recrystallized from hexane-iso-Pr2O). Anal. Calcd for C<sub>26</sub>H<sub>30</sub>F<sub>6</sub>N<sub>2</sub>O<sub>4</sub>Si: C, 54.16; H, 5.24; N, 4.86. Found: C, 54.06; H, 5.29; N, 4.90. <sup>1</sup>H-NMR (DMSO- $d_6$ )  $\delta$ : -0.29 (3H, s), -0.27 (3H, s), 0.96 (6H, d, J= 6 Hz), 0.83—1.25 (4H, m), 1.53 (1H, dd, J=15, 2 Hz), 3.79 (1H, quintet, J= 6 Hz), 4.67 (1H, q, J=7 Hz), 5.26 (1H, br), 6.82 (1H, tt, J=52, 3 Hz), 6.83 (1H, d, J=3 Hz), 7.16 (1H, d, J=3 Hz), 7.08–7.29 (2H, m), 7.38 (2H, d, J= 9 Hz), 7.65-7.77 (1H, m), 7.89 (2H, d, J=9 Hz). IR (KBr): 3400, 1680, 1510, 1430, 1260, 1110, 1010,  $830 \text{ cm}^{-1}$ .  $[\alpha]_D^{20} + 0.3^\circ$  (c=1.0, MeOH). Compound 35a (70% yield): mp 151-152 °C (recrystallized from hexaneiso-Pr<sub>2</sub>O). Anal. Calcd for C<sub>27</sub>H<sub>33</sub>F<sub>5</sub>N<sub>2</sub>O<sub>4</sub>Si: C, 56.63; H, 5.81; N, 4.89. Found: C, 56.51; H, 5.91; N, 5.02. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: -0.62 (3H, s), -0.02 (3H, s), 1.0-1.25 (10H, m), 1.69 (1H, dd, J=15, 2Hz), 3.82 (1H, quintet, J=6 Hz), 4.37 (2H, tt, J=11.8, 1.6 Hz), 4.89 (1H, q, J=6 Hz), 4.89 (1H, br), 6.09 (1H, tt, J=53, 5 Hz), 6.57 (1H, d, J=3 Hz), 6.81 (1H, d, J=3 Hz), 6.99 (2H, d, J=9 Hz), 7.00-7.35 (3H, m), 7.65 (2H, d, J=9 Hz), 7.73 (1H, dt, J=2, 7.8 Hz). IR (KBr): 3471, 1680, 1670, 1519, 1430, 1249, 1010,  $830 \text{ cm}^{-1}$ .  $[\alpha]_{D}^{22} + 13.1^{\circ}$  (c=1.0, MeOH). Compound **35b** (86%) yield): Oil [SI-MS (m/z): 559 (MH<sup>+</sup>)]. <sup>1</sup>H-NMR (DMSO- $d_6$ )  $\delta$ : -0.35 (3H, s), -0.30 (3H, s), 0.94-1.09 (4H, m), 0.98 (6H, d, J=6 Hz), 1.56 (1H, dd, J=15, 2 Hz), 3.79 (1H, septet, J=6 Hz), 4.73 (1H, q, J=7 Hz), 5.16 (1H, br), 6.82 (1H, tt, J=52, 3 Hz), 6.85 (1H, d, J=3 Hz), 7.14 (1H, d, J=3 Hz), 7.17-7.56 (3H, m), 7.38 (2H, d, J=9 Hz), 7.69 (1H, t, J=8 Hz), 7.89 (2H, d, J=9 Hz). IR (neat): 3420, 2960, 2890, 1680, 1610, 1510 cm<sup>-1</sup>.  $[\alpha]_{D}^{22}$  $+14.8^{\circ}$  (c=1.0, MeOH).

**1-[(1***R***,2***S***)-2-(2,4-Diffuorophenyl)-2,3-dihydroxy-1-methylpropyl]-3-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-2(1***H***,3***H***)-imidazolone (36a) Compound 34a was converted to 36a by treatment with H\_2O\_2 as described in the synthesis of 7. Yield 78%. mp 151—152 °C (recrystallized from iso-Pr<sub>2</sub>O).** *Anal.* **Calcd for C\_{22}H\_{20}F\_6N\_2O\_4: C, 53.88; H, 4.11; N, 5.71. Found: C, 53.69; H, 3.99; N, 5.74. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) \delta: 1.26 (3H, d, J=7 Hz), 2.68 (1H, brs), 3.77—3.99 (2H, m), 4.37 (2H, t, J=11.8 Hz), 4.76 (1H, q, J=7 Hz), 4.85 (1H, brs), 6.07 (1H, tt, J=53, 4.6 Hz), 6.46 (1H, d, J=3 Hz), 6.54 (1H, d, J=3 Hz), 6.76—7.00 (2H, m), 6.99 (2H, dt, J=9, 2.4 Hz), 7.53 (2H, dt, J=9, 2.4 Hz), 7.68—7.84 (1H, m). IR (KBr): 3500, 3400, 1640, 1520, 1260, 1120 cm<sup>-1</sup>. [\alpha]<sub>2</sub><sup>20</sup> +2.2° (c=1.0, MeOH).** 

Compound 36b and the 2-fluoro analogs 37a, b were prepared similarly from 34b and 35a, b, respectively. Compound 36b (69% yield): mp 177-179 °C (recrystallized from iso-Pr<sub>2</sub>O). Anal. Calcd for  $C_{21}H_{18}F_6N_2O_4$ : C, 52.95; H, 3.81; N, 5.88. Found: C, 52.72; H, 3.74; N, 5.72. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 1.26 (3H, d, J=7 Hz), 2.57 (1H, br s), 3.76–3.99 (2H, m), 4.79 (1H, q, J=7 Hz), 5.92 (1H, tt, J=53, 2.8 Hz), 6.50 (1H, d, J=3 Hz), 6.59 (1H, d, J=3 Hz), 6.79–6.97 (2H, m), 7.29 (2H, d, J=9 Hz), 7.69 (2H, d, J= 9 Hz), 7.68-7.85 (1H, m). IR (KBr): 3500, 3400, 1650, 1515, 1260, 1110 cm<sup>-1</sup>.  $[\alpha]_D^{20}$  +0.3° (c=1.0, MeOH). Compound **37a** (89% yield): mp 166-167 °C (recrystallized from MeOH-iso-Pr2O). Anal. Calcd for C<sub>22</sub>H<sub>21</sub>F<sub>5</sub>N<sub>2</sub>O<sub>4</sub>: C, 55.93; H, 4.48; N, 5.93. Found: C, 55.77; H, 4.41; N, 6.16. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 1.28 (3H, d, J=7.2 Hz), 2.61 (1H, br), 3.78-4.00 (2H, m), 4.38 (2H, tt, J=11.8, 1.4 Hz), 4.80 (1H, br), 4.85 (1H, q, J= 7.2 Hz), 6.08 (1H, tt, J=53, 4.8 Hz), 6.49 (1H, d, J=3 Hz), 6.55 (1H, d, J= 3 Hz), 7.01 (2H, dt, J=9, 1.8 Hz), 7.02-7.40 (3H, m), 7.55 (2H, dt, J=9, 1.8 Hz), 7.76 (1H, dt, J=8, 1.8 Hz). IR (KBr): 3430, 3284, 1650, 1519, 1448,  $1255 \text{ cm}^{-1}$ .  $[\alpha]_D^{22}$  +2.0° (c=1.0, MeOH). Compound **37b** (60%) yield): mp 175-176 °C (recrystallized from MeOH-iso-Pr<sub>2</sub>O). Anal. Calcd for C<sub>21</sub>H<sub>19</sub>F<sub>5</sub>N<sub>2</sub>O<sub>4</sub>: C, 55.03; H, 4.18; N, 6.11. Found: C, 54.84; H, 4.12; N, 6.24. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.26 (3H, d, J=7 Hz), 2.60 (1H, br), 3.75–3.88 (1H, m), 3.88–4.02 (1H, m), 4.68 (1H, br), 4.88 (1H, q, J=7 Hz), 5.94 (1H, tt, J=53, 3 Hz), 6.55 (1H, d, J=3 Hz), 6.60 (1H, d, J=3 Hz), 7.01-7.40 (3H, m), 7.29 (2H, d, *J*=9 Hz), 7.65 (2H, d, *J*=9 Hz), 7.75 (1H, t, *J*=8 Hz). IR (KBr): 3485, 3400, 1642, 1510, 1436,  $1252 \text{ cm}^{-1}$ .  $[\alpha]_{D}^{23} + 0.58^{\circ}$  (c=1.0, MeOH).

**1-**[(1*R*,2*S*)-2-(2,4-Difluorophenyl)-2-hydroxy-3-methanesulfonyloxy-1methylpropyl]-3-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-2(1*H*,3*H*)imidazolone (38a) Compound 36a was reacted with MsCl as described in the synthesis of 24 to give 38a in 91% yield. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 1.27 (3H, d, J=7 Hz), 2.91 (3H, s), 4.43 (2H, t, J=11.8 Hz), 4.46—4.71 (3H, m), 6.07 (1H, tt, J=53, 4.8 Hz), 6.44 (1H, d, J=3 Hz), 6.57 (1H, d, J=3 Hz), 6.80— 7.05 (2H, m), 7.00 (2H, d, J=9.2 Hz), 7.54 (2H, d, J=9.2 Hz), 7.78—7.92 (1H, m). Anal. Calcd for  $C_{23}H_{22}F_6N_2O_6S\colon C,\,48.59;\,H,\,3.90;\,N,\,4.93.$  Found: C, 48.57; H, 3.84; N, 4.89.

Compounds **38b** and **39a**, **b** were prepared similarly from **36b** and **37a**, **b**, respectively. Compound **38b** (99% yield): <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.27 (3H, d, J=7 Hz), 2.90 (3H, s), 4.45—4.72 (3H, m), 5.93 (1H, tt, J=53, 2.8 Hz), 6.49 (1H, d, J=3 Hz), 6.62 (1H, d, J=3 Hz), 6.81—7.00 (2H, m), 7.30 (2H, d, J= 9.2 Hz), 7.64 (2H, d, J=9.2 Hz), 7.78—7.92 (1H, m). Compound **39a** (quantitative yield): <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.28 (3H, d, J=7 Hz), 2.89 (3H, s), 4.38 (2H, tt, J=11.8, 1.6 Hz), 4.53 (1H, dd, J=11, 1.8 Hz), 4.68 (1H, q, J=7 Hz), 4.73 (1H, d, J=11 Hz), 6.08 (1H, tt, J=53, 5 Hz), 6.47 (1H, d, J=3 Hz), 6.58 (1H, d, J=9 Hz), 7.81 (1H, dt, J=8, 1.8 Hz). Compound **39b** (quantitive yield): <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.26 (3H, d, J=7 Hz), 2.87 (3H, s), 4.52 (1H, dd, J=11, 1.8 Hz), 4.68 —4.78 (2H, m), 5.93 (1H, tt, J=53, 2.8 Hz), 6.52 (1H, d, J=3.2 Hz), 6.62 (1H, d, J=3.2 Hz), 6.52 (1H, dd, J=3.2 Hz), 6.62 (1H, d, J=3.2 Hz), 7.79 (1H, dt, J=8, 1.6 Hz).

**1-[(1***R***,2***R***)-2-(2,4-Difluorophenyl)-2-hydroxy-1-methyl-3-(1***H***-1,2,4-triazol-1-yl)propyl]-3-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-2(1***H***,3***H***)-imidazolone (25a) The mesylate 38a was allowed to react with 1***H***-1,2,4-triazole as described in the synthesis of TAK-187 to obtain 25a (47% yield). The optical purity of 25a was confirmed to be >99% ee [column, Chiralpak AD; mobile phase, hexane–iso-PrOH, 1:1; flow rate; 1 ml/min; detection, UV at 262 nm]. This product was identical to 25a, prepared starting from methyl (***R***)-lactate in our previous report,<sup>1)</sup> on direct comparison with the authentic sample.** 

Compound **25b** and the 2-fluoro analogs **26a**, **b** were prepared similarly from the corresponding mesylates, **38b** and **39a**, **b**, in 46%, 75% and 69% yields, respectively. These products were also identical with those prepared in our previous report<sup>1)</sup> on direct comparison with the authentic sample.

1-[(1R,2R)-2-(2-Fluorophenyl)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-yl)propyl]-3-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-2-imidazolidinone (28a) A solution of 37a (1.0 g) in AcOH (15 ml) was hydrogenated over 10% Pd-C (50% wet, 0.25 g) for 5 h at room temperature and then for 3 h at 50 °C under atmospheric pressure. The catalyst was removed by filtration and the filtrate was concentrated in vacuo. The residue was crystallized from iso-Pr<sub>2</sub>O to give 1-[(1R,2S)-2-(2-fluorophenyl)-2,3-dihydroxy-1methylpropyl]-3-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-2-imidazolidinone (43, 0.69 g, 69%) as colorless crystals. The mother liquor of the above crystallization was evaporated in vacuo. The residue was purified by silica gel column chromatography (AcOEt-hexane, 1:2, v/v) followed by crystallization from iso-Pr<sub>2</sub>O-hexane to obtain an additional amount of 43 (0.20 g, 20%). mp 139—140 °C. Anal. Calcd for C<sub>22</sub>H<sub>23</sub>F<sub>5</sub>N<sub>2</sub>O<sub>4</sub>: C, 55.70; H, 4.89; N, 5.90. Found: C, 55.54; H, 4.84; N, 5.76. IR (KBr): 3430, 2940, 1675, 1640, 1510, 1480, 1460 cm<sup>-1</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ: 1.13 (3H, d, *J*=7.4 Hz), 2.20 (1H, br), 3.56-4.45 (7H, m), 4.33 (2H, t, J=11.9 Hz), 4.98 (1H, br), 6.07 (1H, tt, J=53.2, 4.8 Hz), 6.93 (2H, d, J=8.8 Hz), 6.95-7.40 (3H, m), 7.47 (2H, d, J=8.8 Hz), 7.74 (1H, dt, J=8.2, 1.8 Hz).  $[\alpha]_{D}^{20} - 27.4^{\circ}$  (c=1.0, MeOH).

Compound **43** (5.85 g) was reacted with MsCl as described in the synthesis of **24** to give 1-[(1*R*,2*S*)-2-(2-fluorophenyl)-2-hydroxy-3-methanesul-fonyloxy-1-methylpropyl]-3-[4-(2,2,3,3-tetrafluoropropoxy)phenyl]-2-imidazolidinone **44** (6.8 g, quantitative yield) as a colorless oil. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.12 (3H, d, *J*=7 Hz), 2.89 (3H, s), 3.60—3.69 (2H, m), 3.85—3.95 (2H, m), 4.10—4.29 (1H, br), 4.34 (2H, tt, *J*=12, 1.4 Hz), 4.68 (1H, dd, *J*=11, 1.6 Hz), 4.80 (1H, d, *J*=11 Hz), 6.07 (1H, tt, *J*=53, 5 Hz), 6.94 (2H, d, *J*=9 Hz), 7.00—7.39 (3H, m), 7.47 (2H, d, *J*=9 Hz), 7.79 (1H, dt, *J*=8, 1.8 Hz).

The mesylate **44** (6.8 g) was allowed to react with 1*H*-1,2,4-triazole as described in the synthesis of TAK-187 to obtain **28a** (4.4 g, 68% yield) as colorless prisms. This product was identical with **28a** prepared starting from methyl (*R*)-lactate in our previous report<sup>1)</sup> on direct comparison with the authentic sample.

Acknowledgments We thank Dr. S. Kishimoto and Dr. A. Miyake for their encouragement throughout this work.

## **References and Notes**

- Part VIII: Kitazaki T., Tasaka A., Tamura N., Matsushita Y., Hosono H., Hayashi R., Okonogi K., Itoh K., *Chem. Pharm. Bull.*, submitted.
- Kitazaki T., Tamura N., Tasaka A., Matsushita Y., Hayashi R., Okonogi K., Itoh K., *Chem. Pharm. Bull.*, 44, 314–327 (1996).
- a) Tasaka A., Kitazaki T., Tsuchimori N., Matsushita Y., Hayashi R., Okonogi K., Itoh K., *Chem. Pharm. Bull.*, 45, 321–326 (1997); *b*) Itoh K., Okonogi K., Tasaka A., Hayashi R., Tamura N., Tsuchimori

N., Kitazaki T., Matsushita Y., Obita J., Abstr. of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, F74, p.112 (1996); *c*) Okonogi K., Itoh K., Tasaka A., Kitazaki T., Hayashi R., Obita J., Kitamoto N., Tsuchimori N., Abstr. of the 17th Symposium on Medicinal Chemistry, Tsukuba, 1-P-35, p.124 (1997).

- 4) We attempted to isolate triflate 5 by evaporation of the eluate obtained from silica gel column chromatography. Considerable decomposition was observed and, therefore, the concentrated eluate containing the triflate was used immediately in the subsequent nucleophilic displacement reaction.
- 5) a) Wulfman D. S., Linstrumelle G., Cooper C. F., "Synthetic Application of Diazoalkanes, Diazocyclopentadienes and Diazoazacyclopentadienes. The Chemistry of Diazonium and Diazo Groups," ed. by Patai S., John Wiley & Sons Inc., New York, 1978, p.821-976; b) Corey E. J., Chaykovsky M., J. Am. Chem. Soc., 87, 1353-1364 (1965); c) Tamao K., Ishida N., Tetrahedron Lett., 25, 4245-4248 (1984); d) Konosu T., Tajima Y., Takeda N., Miyaoka T., Kasahara M., Yasuda H., Oida S., Chem. Pharm. Bull., 38, 2476-2486 (1990); e) Konosu T., Miyaoka T., Tajima Y., Oida S., *ibid.*, **39**, 2241–2246 (1991); *f*) Konosu T., Miyaoka T., Tajima Y., Oida S., ibid., 40, 562-564 (1992); g) Mooto D. R., Fraser-Reid B., J. Chem. Soc., Perkin Trans. 1, 1990, 739-746; h) Cainelli G., Ronchi A. U., Bertini F., Grasselli P., Zubiani G., Tetrahedron, 27, 6109-6114 (1971); i) Ohta H., Kimura Y., Sugano Y., Sugai T., ibid., 45, 5469-5476 (1989); i) Park J., Pedersen S. F., ibid., 48, 2069-2080 (1992); k) Clerici A., Porta O., J. Org. Chem., 54, 3872-3878 (1989); l) Imamoto T., Takeyama T., Yokoyama M., Tetrahedron Lett., 25, 3225-3226 (1984); m) Schroder

M., Chem. Rev., 80, 187-213 (1980).

- 6) A similar incident was observed in our previous study on the synthesis of HIV-1 protease inhibitors; The chiral methine carbon adjacent to the dioxoethylene moiety was epimerized during silica gel column chromatography using ordinary eluent (AcOEt : CH<sub>2</sub>Cl<sub>2</sub> : MeOH=5 : 5 : 1): Kitazaki T., Asano T., Kato K., Kishimoto S., Itoh K., *Chem. Pharm. Bull.*, **42**, 2636—2640 (1994).
- Tasaka A., Tamura N., Matsushita Y., Teranishi K., Hayashi R., Okonogi K., Itoh K., *Chem. Pharm. Bull.*, 41, 1035–1042 (1993).
- 8) We attempted the synthesis of the oxirane 6 from 8 by Corey's method.<sup>56)</sup> However, the reaction proceeded without stereoselectivity to give 6 as a diastereomeric mixture with low optical purity.
- 9) It has been reported that reaction of a Grignard's reagent and the 2-hydroxypropiophenone derivative (18) proceeds with high stereoselectivity to give a single diastereomer.<sup>5d-f</sup>
- 10) The stereochemistry of **7** was confirmed to be (1R,2S) after converting to the oxirane **6**, which was identical to (1R,2S)-**6** prepared in our previous study on direct comparison with an authentic sample.<sup>2)</sup>
- 11) The TLC analysis of the reaction mixture at the initial stage indicated the formation of the oxirane **6**, which diminished with increasing reaction time to produce TAK-187.
- 12) The formation of the *O*-substituted by-product was detected by HPLC analysis of the reaction mixture. This by-product was unstable and decomposed during the work-up using aqueous solutions.
- 13) Tasaka A., Tsuchimori N., Kitazaki T., Hiroe K., Hayashi R., Okonogi K., Itoh K., Chem. Pharm. Bull., 43, 441–449 (1995).
- 14) Radddatz P., Minck K.-O., Rippmann F., Schmitges C.-J., J. Med. Chem., 37, 486–497 (1994).