Studies on Alismatis Rhizoma. III.¹⁾ Stereostructures of New Protostane-Type Triterpenes, Alisols H, I, J-23-Acetate, K-23-Acetate, L-23-Acetate, M-23-Acetate, and N-23-Acetate, from the Dried Rhizome of *Alisma orientale*

Masayuki Yoshikawa,^{*, a} Norimichi Tomohiro,^b Toshiyuki Murakami,^a Akira Ikebata,^a Hisashi Matsuda,^a Hideaki Matsuda,^b and Michinori Kubo^b

Kyoto Pharmaceutical University,^a 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607–8414, Japan and Faculty of Pharmaceutical Sciences, Kinki University,^b 3–4–1, Kowakae, Higashiosaka, Osaka 577–0818, Japan. Received November 24, 1998; accepted January 11, 1999

New protostane-type triterpenes termed alisols H, I, J-23-acetate, K-23-acetate, L-23-acetate, M-23-acetate, and N-23-acetate were isolated from Alismatis Rhizoma, the rhizome of *Alisma orientale* JUZEP. Their stereo-structures were determined on the basis of physicochemical evidence.

Key words alisol H; Alismatis Rhizoma; Alisma orientale; protostane-type triterpene; alisol N-23-acetate

We previously reported that the methanolic extract of Alismatis Rhizoma showed inhibitory activities against experimental models of type I, II, III, and IV allergies: that is, 48 h homologous passive cutaneous anaphylaxis in rats, reversed cutaneous anaphylaxis in rats, direct passive Arthus reaction in rats, and picryl chloride-induced contact dermatitis in mice.²⁾ As the constituents responsible for anti-allergic activity of this natural medicine, four protostane-type triterpenes, alisols A $(1)^{3}$ and B $(3)^{3}$ and their monoacetates $(2, 4)^{3}$ and two sesquiterpenes, alismol⁴⁾ and alismoxide,⁴⁾ were characterized.²⁾ The methanolic extract of Alismatis Rhizoma was also found to exhibit anti-complementary activities and to inhibit complement-induced hemolysis and hypotonic shockinduced hemolysis. Furthermore, we have found that four principal triterpene constituents (1-4) inhibited the complement-induced hemolysis, while two sesquiterpenes, alismol and alismoxide, were ineffective.¹⁾

As a continuing part of our studies on Alismatis Rhizoma, we have isolated seven new protostane-type triterpenes called alisols H (10), I (11), J-23-acetate (12), K-23-acetate (13), L-23-acetate (14), M-23-acetate (15), and N-23-acetate (16) from the methanolic extract with anti-allergic and anti-complementary activities. In this paper, we elucidate the structure of these new protostane-type triterpenes (10—16).

The methanolic extract of Alismatis Rhizoma was partitioned into a mixture of ethyl acetate and water to furnish the ethyl acetate-soluble portion and the water-soluble portion as described in previous papers.^{1,2)} The ethyl acetate-soluble portion was subjected to silica gel and octadecyl silica (ODS) column and finally HPLC to give alisols H (10), I (11), J-23-acetate (12), K-23-acetate (13), L-23-acetate (14), M-23-acetate (15), and N-23-acetate (16) together with 1—4, alismol, alismoxide, 11-deoxyalisols B (5) and B-23-acetate (6),⁵⁾ 11-deoxyalisols C (7)⁶⁾ and C monoacetate (8),⁷⁾ and 11-deoxyalisol D (9).⁷⁾

Alisol H (10) showed absorption bands at 3481, 1705, 1700, and 1665 cm⁻¹ assignable to hydroxyl, ketone, and enone functions in its IR spectrum. The UV spectrum of 10 showed absorption maximum at 243 nm (log ε 3.8) suggestive of an enone function. In the negative-ion FAB-MS of 10, a quasimolecular ion peak was observed at m/z 469 (M-

H)⁻, while its positive-ion FAB-MS showed quasimolecular ion peaks at m/z 471 (M+H)⁺ and 493 (M+Na)⁺. High-resolution MS analysis of the quasimolecular ion peak (M+H)⁺ in the positive-ion FAB-MS revealed the molecular formula of **10** to be C₃₀H₄₆O₄.

The ¹H-NMR (CDCl₃) and ¹³C-NMR (Table 1) spectra of 10, which were assigned with the aid of various NMR analytical methods,⁸⁾ showed signals assignable to two isolated methylenes [δ 1.80, 2.44 (both d, J=19.5 Hz, 15-H₂), 2.52, 2.54 (both d, J=20.3 Hz, 24-H₂)] and two methylenes [δ 2.30, 2.64 (both m, 2-H₂), 2.66, 2.98 (both m, 22-H₂)] adjacent to a ketocarbonyl group together with seven tertiary methyls, a secondary methyl, three ketocarbonyls, and a tetrasubstituted olefin. The plane structure of 10 including the positions of the three ketocarbonyl groups and an olefin function was clarified by a heteronuclear multiple bond correlation (HMBC) experiment on 10, which showed longrange correlations between the following protons and carbons: 3-C and 2-H₂, 28-H₃, 29-H₃; 16-C and 15-H₂; 23-C and 22-H₂, 24-H₂; 13-C and 18-H₃; 17-C and 20-H, 21-H₃, 22-H₂ (Fig. 1 A). The protostane-type stereostructure of 10 was confirmed by a nuclear Overhauser effect spectroscopy (NOESY) spectrum as shown in Fig. 2 a. Furthermore, the carbon signals in the ¹³C-NMR spectrum of **10** were found to be superimposable on those of 11-deoxyalisol C (7),⁶⁾ except for the signals due to the side chain moiety (C-22-27), so that the structure of alisol H (10) was determined as shown.

The IR spectrum of alisol I (11) showed an absorption band at 1705 cm⁻¹ ascribable to the ketone function. In the electron impact-mass spectrum (EI-MS) of 11, a molecular ion peak was observed at m/z 454 (M⁺) and the molecular formula $C_{30}H_{46}O_3$ was determined by high-resolution MS measurement. The ¹H-NMR (CDCl₃) and ¹³C-NMR (Table 1) spectra of 11⁸) showed signals assignable to three methines bearing an oxygen function [δ 4.47 (dd-like, 16-H), 3.53 (ddd, J=2.1, 7.9, 12.2 Hz, 23-H), 2.71 (d, J=7.9 Hz, 24-H)] together with seven tertiary methyls, a secondary methyl, a ketocarbonyl, and a tetrasubstituted olefin. Comparison of the ¹H- and ¹³C-NMR spectra for 11 with those for alisol F⁹) and 16,23-oxidoalisol B⁷) allowed us to presume the presence of the 24,25-oxide and 16,23-oxide rings in the protostane-

© 1999 Pharmaceutical Society of Japan

type triterpene structure of **11**. The positions of the ketocarbonyl and tetrasubstituted olefin function in the protostane structure of **11** were characterized by an HMBC experiment. Namely, long-range correlations were observed between the following protons and carbons: 3-C and 2-H₂, 27-H₃, 28-H₃; 13-C and 12-H₂, 18-H₃; 17-C and 16-H₂, 20-H, 21-H₃, 28-H₃ (Fig. 1 B). The stereostructure of **11** was characterized from an NOESY experiment as depicted in Fig. 2 b and by comparison of the ¹H–¹H coupling pattern of the 23 and 24-protons in the ¹H-NMR spectrum of **11** with those for known protostane-type triterpenes having the 24,25-epoxide function.^{5–7,9)} Consequently, the structure of alisol I (**11**) was elucidated as shown.

The IR spectra of alisols J-23-acetate (12) and K-23-acetate (13) were similar and showed absorption bands due to ester, ketone, and enone functions. In the UV spectrum of 12, an absorption maximum was observed at 246 nm (log ε 3.8), which suggested the presence of an enone function. Alisols J-23-acetate (12) and K-23-acetate (13) were formed to have the same molecular formula C₃₂H₄₆O₆, which was obtained from the positive- and negative-ion FAB-MS [quasimolecular ion peak *m/z*: 527 (M+H)⁺, 549 (M+Na)⁺, 525 (M-H)⁻] and by high-resolution MS measurement. The ¹H-NMR (CDCl₃) and ¹³C-NMR (Table 1) spectra of 12⁸) showed sig-

nals assignable to a trisubstituted olefin [δ 5.84 (s, 12-H)], a methine bearing an acetoxyl group [δ 2.08 (s, 23-OAc), 4.86 (ddd, J=2.8, 8.6, 15.0 Hz, 23-H)], and two methines bearing an oxygen function [δ 3.67 (d-like, 16-H), 2.78 (d, J=8.6 Hz, 24-H)] together with seven tertiary methyls, a secondary methyl, and two ketocarbonyl carbons. The plane structure of 12 including the positions of a ketone, an enone, two epoxides, and an acetoxyl function was confirmed by an HMBC experiment as shown in Fig. 1 C. The ¹H-NMR (CDCl₃) and ¹³C-NMR (Table 1) spectra of **13**,⁸⁾ in contrast, showed the presence of the same functional groups as 12 and also, in the HMBC experiment on 13 (Fig. 1 C), the same long-range correlations as 12 were observed. This evidence confirmed for us that 12 and 13 were stereoisomers at the 16,17-epoxide moiety. The stereostructures of the 16,17-epoxide in 12 and 13 were clarified by NOESY experiments, which showed NOE correlations between the following protons [12: 16-H and 15β -H, 21-H₃; 15α -H and 30-H₃; 23-H and 26-H₃; 24-H and 27-H₃ (Fig. 2 c). 13: 16-H and 15 α -H; 15 α -H and 30-H; 23-H and 26-H₃; 24-H and 27-H₃ (Fig. 2 d)]. The proton and carbon signals of the side chain moiety (C-20-C-27) were found to be very similar to those of known protostane-type triterpenes (ex. 4, 6, 8) having the 23β -acetoxyl and the 24β ,25-epoxyl function. On the basis of the above evidence,

Fig. 2. NOE Correlations in the NOESY Spectra of 10-16

the structures of alisol J-23-acetate (12) and alisol K-23-acetate (13) were characterized as shown.

Alisol L-23-acetate (14) showed absorption bands due to acetyl, ketone, and enone functions in the IR spectrum, while its UV spectrum showed absorption maximum at 285 nm (log ε 3.4) suggestive of a dienone function. In the positiveand negative-ion FAB-MS of 14, quasimolecular ion peaks were observed at m/z 511 (M+H)⁺, 533 (H+Na)⁺, and 509 $(M-H)^-$ and the molecular formula $C_{32}H_{46}O_5$ of 14 was clarified by the high-resolution MS measurement. The ¹H-NMR (CDCl₃) and ¹³C-NMR (Table 1) spectra of 14⁸) showed signals assignable to a dienone [δ 6.48 (dd, J=3.7, 10.4 Hz, 11-H), 6.14 (dd, J=1.8, 10.4 Hz, 12-H)], a methine bearing an acetoxyl group [δ 2.06, (s, 23-OAc), 4.57 (ddd, J=2.8, 8.3, 11.3 Hz, 23-H)], a methine bearing an oxygen function [δ 2.73 (d, J=8.3 Hz, 24-H)], and an isolated meth-

Table 1. 13 C-NMR Data of Alisols H (10), I (11), J-23-Acetate (12), K-23-Acetate (13), L-23-Acetate (14), M-23-Acetate (15), and N-23-Acetate (16) (CDCl₃, 125 MHz)

	10	11	12	13	14	15	16
C-1	31.7	31.6	32.3	32.5	32.3	30.8	31.0
C-2	33.6	33.7	33.7	33.7	33.3	33.7	33.8
C-3	219.5	220.1	219.5	219.3	219.1	219.6	220.2
C-4	47.0	47.0	47.0	47.0	47.2	46.9	47.0
C-5	48.0	47.8	48.0	48.3	46.1	48.8	48.9
C-6	19.9	20.0	19.7	20.1	19.3	20.0	20.2
C-7	34.6	33.7	32.9	33.4	31.2	34.7	34.0
C-8	40.4	40.8	41.5	44.7	47.7	40.2	41.3
C-9	42.8	43.9	55.7	55.2	47.7	44.4	45.9
C-10	36.2	36.3	37.1	37.2	36.0	36.7	36.8
C-11	22.1	23.0	199.5	199.5	121.6	70.7	71.2
C-12	24.5	22.4	123.3	124.7	138.5	66.4	66.4
C-13	179.2	139.6	167.1	167.1	171.5	175.8	141.4
C-14	50.0	55.3	56.8	50.2	39.3	49.2	56.9
C-15	45.8	40.0	36.0	33.2	44.6	46.7	31.3
C-16	208.3	79.8	64.0	63.2	207.6	208.6	29.1
C-17	138.8	131.7	70.7	69.4	137.7	140.1	140.4
C-18	22.9	24.4	25.5	25.3	23.8	25.2	26.5
C-19	23.7	23.5	25.1	25.1	24.8	25.5	25.5
C-20	25.8	26.6	28.8	26.9	26.1	27.4	28.1
C-21	19.3	18.4	15.4	18.3	19.8	20.2	20.6
C-22	48.2	34.9	35.8	34.4	35.7	35.9	37.5
C-23	212.6	72.5	71.9	72.0	71.9	73.8	72.5
C-24	53.4	65.7	64.6	64.9	65.0	64.3	64.5
C-25	69.6	57.1	59.2	59.1	58.6	59.0	59.0
C-26	29.2 ^{<i>a</i>})	19.3	19.8	19.7	19.4	19.1	19.2
C-27	29.3 ^{a)}	25.0	24.6	24.7	24.7	24.6	24.7
C-28	29.4	29.3	29.4	29.4	29.3	29.6	29.1
C-29	19.7	19.7	19.4	19.4	19.2	20.1	20.2
C-30	22.0	22.7	24.9	24.7	21.9	22.9	23.7
Ac-1			170.3	170.3	170.0	173.1	172.6
Ac-2			21.2	21.2	21.1	21.4	21.3

a) May be interchangeable.

ylene adjacent to a carbonyl function [δ 1.90, 2.36 (both d, $J=18.3 \text{ Hz}, 15 \text{-H}_2$ together with methyls and methylenes due to protostane-type triterpene skeleton. The plane structure of 14 was determined by an HMBC experiment, which showed long-range correlations between the following protons and carbons: 3-C and 2-H₂, 28-H₃, 29-H₃; 9-C and 11-H, 30-H₃; 13-C and 12-H; 16-C and 15-H₂; 17-C and 21-H₃; 24-C and 23-H, 26-H₃, 27-H₃; 25-C and 26-H₃, 27-H₃; acetyl carbonyl-C and 23-H, acetyl-H₃ (Fig. 1 D). The carbon signals in the ¹³C-NMR spectrum of 14 were very similar to those of 8, except for the signals due to the disubstituted olefin of the C-ring part in 14. The stereostructure of 14 was deduced by a NOESY experiment, and the stereostructure of the side chain bonded to the 17-position was deduced to be the same as that of 4, 6, and 8 by comparison of the 1 H- and ¹³C-NMR data. Consequently, the structure of alisol L-23-acetate (14) was elucidated as shown.

The IR spectrum of alisol M-23-acetate (**15**) showed absorption bands at 3480, 1738, 1705, and 1695 cm⁻¹ assignable to hydroxyl, acetyl, ketone, and enone functions, whereas an absorption maximum was observed at 244 nm (log ε 3.8) in its UV spectrum. Here again, the molecular formula $C_{32}H_{48}O_7$ was determined from the positive- and negative-ion FAB-MS [m/z 545 (M+H)⁺, 567 (M+Na)⁺, 543 (M-H)⁺] and by high-resolution MS measurement. The ¹H-NMR (CDCl₃) and ¹³C-NMR (Table 1) spectra of **15**⁸ showed the presence of two methines bearing a hydroxyl group [δ 3.86 (m, 11-H), 4.53 (br s, 12-H)], a methine bearing an acetoxyl group [δ 2.16 (s, 23-OAc), 4.57 (ddd, J=2.2, 8.9, 11.0 Hz, 23-H], an epoxide [δ 2.82 (d, J=8.9 Hz, 24-H)], and an isolated methylene adjacent to a ketocarbonyl function [δ 1.80, 2.47 (both d, J=19.2 Hz, 15-H₂)]. The plane structure of **15** was also determined from an HMBC experiment (Fig. 1 E) and its stereostructure including the vicinal diol moiety was clarified by an NOESY experiment, which showed NOE correlations between the 11-proton and the 12-proton and between the 11-proton of the ¹H- and ¹³C-NMR data for **15** with those of known protostane-type triterpenes such as **8** and **14** led us to formulate the structure of alisol M-23-acetate (**15**) as shown.

Alisol N-23-acetate (16) showed absorption bands due to hydroxyl, ester, and ketone functions. The molecular formula $C_{32}H_{50}O_6$ was determined from the positive- and negative-ion FAB-MS $[m/z 531 (M+H)^+, 553 (M+Na)^+, 529 (M-H)^-]$ and by high-resolution FAB-MS measurement. The ¹H-NMR $(CDCl_{3})$ and ¹³C-NMR (Table 1) spectra of 16⁸⁾ showed the presence of a vicinal diol moiety [δ 3.73 (m, 11-H), 4.35 (br s, 12-H)], a methine bearing an acetoxyl group [δ 2.14 (s, 23-OAc), 4.75 (ddd-like, 23-H)], and an epoxide [δ 2.80 (d, J=8.6 Hz, 24-H)]. The carbon signals in the ¹³C-NMR spectrum of 16 were superimposable on those of 15, except for the signals due to the carbons on D-ring. The plane structure of 16 was determined by an HMBC experiment (Fig. 1 F) and its stereostructure was deduced by a NOESY experiment (Fig. 2 g). On the basis of the above evidence and comparison of the ¹H- and ¹³C-NMR data for **16** with those for **4**, the structure of alisol N-23-acetate (16) was elucidated as shown.

Experimental

The following instruments were used to obtain physical data: melting points, Yanagimoto micro-melting point apparatus MP-500D (values are uncorrected); specific rotations, Horiba SEPA-300 digital polarimeter (l=5 cm); UV spectra, Shimadzu UV-1200 spectrometer; IR spectra, Shimadzu FTIR-8100 spectrometer; EI-MS and high-resolution MS, JEOL JMS-GC-MATE mass spectrometer; FAB-MS and high-resolution MS, JEOL JMS-SX 102A mass spectrometer; ¹H-NMR spectra, JNM-LA500 (500 MHz) spectrometer; ¹³C-NMR spectra, JNM-LA500 (125 MHz) spectrometer with tetramethylsilane as an internal standard.

The following experimental conditions were used for chromatography: ordinary-phase silica gel column chromatography, Silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150—350 mesh); reversed-phase silica gel column chromatography, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100—200 mesh); TLC, pre-coated TLC plates with Silica gel $60F_{254}$ (Merck, 0.25 mm) (ordinary phase) and Silica gel RP-18 $60F_{254}$ (Merck, 0.25 mm) (reversed phase); reversed-phase HPTLC, pre-coated TLC plates with Silica gel RP-18 $60WF_{254S}$ (Merck, 0.25 mm); detection was achieved by spraying with 1% Ce(SO₄)₇=10% aqueous H₂SO₄ and heating.

Isolation of Protostane-Type Triterpenes from the Dried Rhizome of *Alisma orientale* The MeOH extract (1.5 kg) from Chinese Alismatis Rhizoma (20 kg) was partitioned into a mixture of AcOEt–water. Isolation of major constituents, alismol, alismoxide, alisols A (1) and B (3) and their monoacetate (2, 4), from the AcOEt-soluble portion was reported previously.²⁾ The AcOEt-soluble portion (300 g) was subjected to silica gel column chromatography [BW-200 (Fuji Silysia Chemical, Ltd., 3 kg), CHCl₃–MeOH (50:1 \rightarrow 30:1 \rightarrow 10:1) \rightarrow MeOH] to give nine fractions [fr. 1 (29.8 g), fr. 2 (38.7 g), fr. 3 (55.3 g), fr. 4 (60.6 g), fr. 5 (23.2 g), fr. 6 (25.6 g), fr. 7 (20.1 g), fr. 8 (10.3 g), fr. 9 (36.4 g)]. Fraction 2 (38.7 g) was further separated by repeated silica gel column [1.5 kg each, 1) *n*-hexane–acetone (10:1 \rightarrow 4:1 \rightarrow 2:1) \rightarrow CHCl₃–acetone (10:1); 2) CHCl₃–acetone (30:1 \rightarrow 5:1) \rightarrow CHCl₃], ODS column [Chromatorex ODS DM 1020T (Fuji Silysia Chemical, Ltd.), MeOH–H₂O], and finally HPLC [column: YMC-Pack R&D-ODS-5-A, 250×20 mm i.d., solvent : 80–90% aqueous MeOH, flow

rate: 9.0—10.0 ml/min] to furnish alisols H (10, 18.2 mg), I (11, 41.5 mg), J-23-acetate (12, 52.5 mg), K-23-acetate (13, 52.4 mg), L-23-acetate (14, 27.3 mg), M-23-acetate (15, 28.4 mg), and N-23-acetate (16, 19.7 mg) and 11-deoxyalisols B (5, 15 mg), B-23-acetate (6, 139 mg), C (7, 9 mg), and Cmonoacetate (8, 115 mg). Known protostane-type triterpenes were identified by comparison with authentic samples (¹H- and ¹³C-NMR, IR, and $[\alpha]_D$ data).

Alisol H (10): A white powder, $[\alpha]_{D}^{25} + 59.1^{\circ} (c=0.9, \text{CHCl}_3)$. High-resolution negative-ion FAB-MS: Calcd for $C_{30}H_{47}O_4$ (M+H)⁺: 471.3474. Found: 471.3488. UV $\lambda_{\max}^{\text{CHCl}_3}$ nm (log ε): 243 (3.8). IR (KBr): 3481, 1705, 1700, 1665, 1462, 1379, 1238 cm⁻¹. ¹H-NMR (CDCl}_3) δ : 0.88, 0.92, 1.06, 1.07, 1.18, 1.20, 1.24 (3H each, all s, 19, 30, 29, 28, 26, 27, 18-H_3), 1.16 (3H, d, J=7.0 Hz, 21-H_3), 1.49, 2.07 (1H each, both m, 1-H_2), 1.80, 2.44 (1H each, both d, J=19.5 Hz, 15-H₂), 1.83 (1H, s, 9-H), 1.98 (1H, m, 5-H), 2.30, 2.64 (1H each, both m, 2-H₂), 2.52, 2.54 (1H each, both d, J=20.3 Hz, 24-H₂), 2.66, 2.98 (1H each, both m, 22-H₂). ¹³C-NMR (CDCl₃) $\delta_{\rm C}$: Given in Table 1. Positive-ion FAB-MS m/z: 471 (M+H)⁺, 493 (M+Na)⁺. Negative-ion FAB-MS m/z 469: (M-H)⁻.

Alisol I (11): A white powder, $[\alpha]_D^{25} + 51.9^{\circ}$ (c=2.1, CHCl₃). High-resolution EI-MS: Calcd for $C_{30}H_{46}O_3$ (M⁺): 454.3447. Found: 454.3422. IR (KBr): 1705, 1458, 1377, 1242 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.82, 0.91, 1.03, 1.06, 1.20 (3H each, all s, 19, 30, 29, 28, 18-H₃), 1.15 (3H, d, J=7.8 Hz, 21-H₃), 1.31 (6H, s, 26, 27-H₃), 1.33, 2.30 (1H each, both m, 15-H₂), 1.42, 2.03 (1H each, both m, 1-H₂), 1.68 (1H, dd-like, 9-H), 2.03 (1H, m, 5-H), 2.30, 2.63 (1H each, both m, 2-H₂), 2.71 (1H, d, J=7.9 Hz, 24-H), 3.53 (1H, ddd, J=2.1, 7.9 12.2 Hz, 23-H), 4.47 (1H, dd-like, 16-H). ¹³C-NMR (CDCl₃) δ_C : Given in Table 1. EI-MS m/z: 454 (M⁺).

Alisol J-23-Acetate (**12**): A white powder, $[\alpha]_{25}^{25} + 39.1^{\circ}$ (c=2.6, CHCl₃). High-resolution positive-ion FAB-MS: Calcd for $C_{32}H_{47}O_6$ (M+H)⁺: 527.3373. Found : 527.3386. UV $\lambda_{m}^{CHCl_3}$ nm (log ε): 246 (3.8). IR (KBr): 1738, 1700, 1661, 1462, 1382, 1238 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.04 (3H, d, J=7.0 Hz, 21-H₃), 1.05, 1.08, 1.10, 1.17, 1.33, 1.36, 1.38 (3H each, all s, 29, 28, 25, 30, 18, 26, 27-H₃), 1.56, 1.58 (1H each, both d, J=3.4 Hz, 15-H₂), 1.92, 2.44 (1H each, both m, 1-H₂), 2.08 (3H, s, 23-OAc), 2.22 (1H, m, 5-H), 2.37, 2.68 (1H each, both m, 2-H₂), 2.58 (1H, m, 9-H), 2.78 (1H, d, J=8.6 Hz, 24-H), 3.67 (1H, d-like, 16-H), 4.86 (1H, ddd, J=2.8, 8.6, 15.0 Hz, 23-H), 5.84 (1H, s, 12-H). ¹³C-NMR (CDCl₃) δ_{C} : Given in Table 1. Positive-ion FAB-MS m/z: 525 (M-H)⁻.

Alisol K-23-Acetate (13): A white powder, $[\alpha]_{D}^{25} + 69.4^{\circ}$ (c=2.6, CHCl₃). High-resolution positive-ion FAB-MS: Calcd for $C_{32}H_{47}O_6$ (M+H)⁺: 527.3372. Found: 527.3386. IR (KBr): 1738, 1705, 1661, 1460, 1379, 1240 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.05, 1.08, 1.11, 1.17, 1.33, 1.34, 1.37 (3H each, all s, 29, 28, 19, 30, 27, 18, 26-H₃), 1.07 (3H, d, J=7.0 Hz, 21-H₃), 1.74, 2.02 (1H each, both dd-like, 15-H₂), 1.91, 2.45 (1H each, both m, 1-H₂), 2.09 (3H, s, 23-OAc), 2.15 (1H, m, 5-H), 2.30, 2.68 (1H each, both m, 1-H₂), 2.66 (1H, s, 9-H), 2.78 (1H, d, J=8.5 Hz, 24-H), 3.67 (1H, d, J=1.9 Hz, 16-H), 4.89 (1H, ddJ = 2.5, 8.5, 13.8 Hz, 23-H), 5.91 (1H, s, 12-H). ¹³C-NMR (CDCl₃) δ_C : Given in Table 1. Positive-ion FAB-MS m/z: 527 (M+H)⁺, 549 (M+Na)⁺. Negative-ion FAB-MS m/z: 525 (M-H)⁻.

Alisol L-23-Acetate (14): A white powder, $[\alpha]_{D}^{25} + 86.7^{\circ}$ (c=1.4, CHCl₃). High-resolution FAB-MS: Calcd for C₃₂H₄₇O₅ (M+H)⁺: 511.3424. Found : 511.3430. UV $\lambda_{\text{max}}^{\text{CHCl}_3}$ nm (log ε): 285 (3.4). IR (KBr): 1740, 1705, 1665, 1458, 1379, 1285 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.94, 0.96, 1.06, 1.09, 1.12, 1.27, 1.30 (3H each, all s, 19, 30, 29, 28, 18, 26, 27-H₃), 1.17 (3H, d, J=7.0 Hz, 21-H₃), 1.68, 2.06 (1H each, both m, 1-H₂), 1.90, 2.36 (1H each, both d, J=18.3 Hz, 15-H₂), 2.06 (3H, s, 23-OAc), 2.28, 2.71 (1H each, both m, 2Alisol M-23-Acetate (15): A white powder, $[\alpha]_{D}^{25} + 35.4^{\circ}$ (c=1.4, CHCl₃). High-resolution positive-ion FAB-MS: Calcd for $C_{32}H_{49}O_7$ (M+H)⁺: 545.3479. Found: 545.3477. $\lambda_{max}^{CHCl_3}$ nm (log ε): 244 (3.8). IR (KBr): 3480, 1738, 1705, 1675, 1462, 1381, 1238 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.88, 1.08, 1.09, 1.10, 1.17, 1.31, 1.48 (3H each, all s, 30, 29, 28, 19, 26, 27, 18-H₃), 1.16 (3H, d, J=6.2 Hz, 21-H₃), 1.80, 2.47 (1H each, both d, J=19.2 Hz, 15-H₂), 2.05 (1H, m, 5-H), 2.08 (1H, m, 9-H), 2.16 (3H, s, 23-OAc), 2.24 (2H, m, 1-H₂), 2.38, 2.65 (1H each, both m, 2-H₂), 2.82 (1H, d, J=8.9 Hz, 24-H), 3.86 (1H, m, 11-H), 4.53 (1H, br s, 12-H), 4.57 (1H, ddd, J=2.2, 8.9, 11.0 Hz, 23-H). ¹³C-NMR (CDCl₃) δ_C : Given in Table 1. Positive-ion FAB-MS m/z: 543 (M-H)⁻.

Alisol N-23-Acetate (**16**): A white powder, $[\alpha]_{D}^{25} + 52.9^{\circ}$ (c=1.0, CHCl₃). High-resolution positive-ion FAB-MS: Calcd for C₃₂H₅₁O₆ (M+H)⁺: 531.3686. Found : 531.3678. IR (KBr): 3503, 1739, 1705, 1462, 1377, 1242 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.95, 1.05, 1.06, 1.07, 1.31, 1.32, 1.33 (3H each, all s, 30, 19, 28, 29, 18, 26, 27-H₃), 1.01 (3H, d, J=9.2 Hz, 21-H₃), 1.28, 1.93 (1H each, both m, 15-H₂), 1.98 (1H, m, 9-H), 2.03 (1H, m, 5-H), 2.10, 2.22 (1H each, both m, 16-H₂), 2.14 (3H, s, 23-OAc), 2.22 (2H, m, 1-H₂). 2.37, 2.63 (1H each, both m, 2-H₂), 2.80 (1H, d, J=8.6 Hz, 24-H), 3.73 (1H, m, 11-H), 4.35 (1H, brs, 12-H), 4.75 (1H, ddd-like, 23-H). ¹³C-NMR (CDCl₃) δ_{c} : given in Table 1. Positive-ion FAB-MS m/z: 531 (M+H)⁺, 553 (M+N)⁺. Negative-ion FAB-MS m/z: 529 (M-H)⁻.

References and Notes

- Matsuda H., Tomohiro N., Yoshikawa M., Kubo M., Biol. Pharm. Bull., 21, 1317–1321 (1998).
- Kubo M., Matsuda H., Tomohiro N., Yoshikawa M., Biol. Pharm. Bull., 20, 511–516 (1997).
- a) Murata T., Imai Y., Hirata T., Miyamoto M., *Chem. Pharm. Bull.*, 18, 1347—1353 (1970); b) Murata T., Miyamoto M., *ibid.*, 18, 1354— 1361 (1970); c) Kamiya K., Murata T., Nishikawa M., *ibid.*, 18, 1362—1368 (1970); d) Murata T., Shinohara M., Miyamoto M., *ibid.*, 18, 1369—1384 (1970).
- a) Yoshikawa M., Hatakeyama S., Tanaka N., Fukuda Y., Murakami N., Yamahara J., *Chem. Pharm. Bull.*, 40, 2582–2584 (1992); b) Yoshikawa M., Yamaguchi S., Matsuda H., Kohda Y., Ishikawa H., Tanaka N., Yamahara J., Murakami N., *ibid.*, 42, 1813–1816 (1994).
- Yoshikawa M., Hatakeyama S., Tanaka N., Matsuoka T., Yamahara J., Murakami N., Chem. Pharm. Bull., 41, 2109–2112 (1993).
- Pei W. G., Fukuyama Y., Yamada T., Rei W., Jinxian B., Nakagawa K., *Phytochemistry*, 27, 1161–1164 (1988).
- Nakajima Y., Satoh Y., Katsumata M., Tsujiyama K., Ida Y., Shoji J., *Phytochemistry*, 36, 119–127 (1994).
- 8) The ¹H- and ¹³C-NMR data of **10**—**16** were assigned with the aid of homo- and hetero-correlation spectroscopy (¹H–¹H, ¹H–¹³C COSY), homo- and hetero-nuclear Hartmann–Hahn spectroscopy (¹H–¹H, ¹H–¹³C HOHAHA), distortionless enhancement polarization transfer (DEPT), NOESY, and HMBC experiments.
- Yoshikawa M., Hatakeyama S., Tanaka N., Fukuda Y., Yamahara J., Murakami N., Chem. Pharm. Bull., 41, 1948–1954 (1993).