Synthesis and Structure of the Marine Ascidian 8-Oxoadenine Aplidiamine

Taisuke Itaya,* Yoshitaka Hozumi, Tae Kanai, and Tomihisa Ohta

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920–0934, Japan. Received May 10, 1999; accepted June 14, 1999

Alkylation of 8-oxoadenosine (13) with 4-benzyloxy-3,5-dibromobenzyl bromide (20), followed by Dimroth rearrangement and acid hydrolysis, provided N-(3,5-dibromo-4-hydroxybenzyl)-8-oxoadenosine (15). The 2'-deoxy version of this reaction sequence accomplished the first synthesis of N-(3,5-dibromo-4-hydroxybenzyl)-8-oxoadenine (16), which is the correct expression for marine ascidian purine aplidiamine.

Key words aplidiamine synthesis; marine metabolite; 8-oxoadenosine alkylation; Dimroth rearrangement; nucleoside hydrolysis; heteronuclear multiple bond connectivity

Although 8-oxoadenine (type 12: R=H)¹⁾ and 8-oxoadenosine $(13)^{2}$ have long been known, the natural occurrence of neither of them has been reported. 1,9-Dimethyl-8-oxoadenine $(1)^{3}$ (isolated from the English Channel sponge Hymeniacidon sanguinea GRANT only in the form of the N^6 acetyl derivative⁴) was the first instance of naturally occurring 8-oxoadenine derivatives. Later on, biologically active caissarone hydrochloride (2) was isolated from the sea anemone Bunodosoma caissarum CORREA,5) and the zwitterionic structure 3 was assigned to its free base.⁶⁾ Antibiotic nucleotides phosmidosines (4-6) were then isolated from the fermentation broth of *Streptomyces* sp. strain RK-16.⁷) In 1997, Kang and Fenical reported the isolation of aplidiamine from the marine ascidian Aplidiopsis sp., and they assigned the unique zwitterionic structure 7 to this newest member of a small family of naturally occurring 8-oxoadenine derivatives rather than the usual undissociated structure 16 on the basis of its heteronuclear multiple bond connectivity (HMBC) spectrum.⁸⁾ The zwitterionic structure 7 seemed to us unlikely because the acidity of the phenol moiety of 16 might be too weak to protonate the weakly basic 2-oxoimidazole moiety. We herein report the first synthesis of aplidiamine and propose adopting 16 as its correct structure.⁹

The synthesis of **16** followed the reaction sequence (Chart 1) established in this laboratory for the synthesis of *N*-methyl-8-oxoadenine (**12a**).¹⁰ It has been reported that 1-methyl-8-oxoadenosine (**8a**), which is obtainable by methyla-

* To whom correspondence should be addressed.

tion of 8-oxoadenosine (13) in excellent yield, undergoes Dimroth rearrangement to produce N-methyl-8-oxoadenosine (10a) in good yield.^{10a)} A parallel reaction sequence starting from the reaction of 13 with 4-benzyloxy-3,5-dibromobenzyl bromide (20) would produce 10b, which might be a good precursor for the synthesis of the target purine 16. The requisite benzyl bromide 20 was prepared from 3,5-dibromo-4-hydroxybenzaldehyde (17). The latter compound had been prepared in 93% yield by bromination of 4-hydroxybenzaldehyde with Br₂ in toluene containing BuNH₂ at $-78 \,^{\circ}\text{C}^{.11}$ We prepared the same compound 17 more conveniently in 96% yield by treating 4-hydroxybenzaldehyde with an excess of Br₂ in AcOH at room temperature in the presence of AcONa. Benzylation of 17 with PhCH₂Br in the presence of NaH, followed by sequential treatment with NaBH₄ and PBr₃, afforded the bromide 20 (Chart 2). Thus, 8-oxoadenosine (13) was treated with 20 in AcNMe₂ at 50 °C for 111 h, and the crude product was heated in boiling 1 N aqueous NaOH for 1 h to afford the rearranged nucleoside 10b in 58% overall yield. Hydrolysis of N-methyl-8-oxoadenosine (10a) takes place so slowly in aqueous HCl to yield N-methyl-8-oxoadenine (12a)^{10b)} that 10b would produce the purine 16 through the nucleoside 15 under similar conditions. Indeed, $15 \cdot H_2O$ was obtained in 52% yield by heating 10b in 1 N aqueous HCl for 1 h. More drastic conditions were necessary for removal of the sugar moiety of 15. However, hydrolysis of the glycosyl bond of 15 was accompanied by N-debenzylation to provide mainly 8-oxoadenine (type 12: R=H), when 10b was heated in boiling 2 N aqueous HCl for 48 h according to the procedure employed for hydrolysis of **10a**.^{10b)}

It is well-known that 2-deoxyribofuranosides undergo hydrolysis much more easily than the corresponding ribofuranosides.¹²⁾ Accordingly, selective cleavage of the glycosyl linkage would be possible for the 2'-deoxy analogue **11b**. This compound was obtained from 2'-deoxy-8-oxoadenosine $(14)^{13}$ in 74% overall yield by repeating the reaction sequence similar to that described above for the synthesis of **10b**. Hydrolysis of **11b** indeed proceeded selectively at the glycosyl bond, producing *N*-(4-benzyloxy-3,5-dibromobenzyl)-8-oxoadenine (**12b**) as the hemihydrate in 90% yield after treatment of **11b** with boiling 1×1000 after the duration of the reaction of **12b** was attained for the duration of the reaction for a further 50 min, providing the target compound **16** as the monohydrate in 78% yield.

© 1999 Pharmaceutical Society of Japan

Chart 1

The ¹H- and ¹³C-NMR spectra of this sample were identical with those⁸⁾ reported for aplidiamine, confirming the correctness of the gross structure assigned to this marine metabolite. However, the ¹H-NMR pattern arising from the purine moiety of this compound (δ 8.05, 9.83, 11.34) presents an almost complete similarity to that of the *O*-benzyl derivative **12b** (δ 8.06, 9.86, 11.37), supporting the correctness of the undissociated structure **16** rather than the zwitterion **7**. The structure **16** was finally identified by our own HMBC experiment using an analytical sample of synthetic aplidiamine: marked ¹H–¹³C long-range connectivity was observed between C(3',5') at δ 111.8 and a hydrogen (OH) at δ 9.87; another set observed was correlations between C(8) at δ 152.5 and two hydrogens [N(7)- and N(9)-H] at δ 9.83 and 11.34.

Experimental

General Notes All melting points were determined using a Yamato MP-1 or Büchi model 530 capillary melting point apparatus and values are corrected. Spectra reported herein were recorded on a JEOL JMS-SX102A mass spectrometer, a Hitachi model 320 UV spectrophotometer [for solutions in 95% aqueous EtOH, 0.1×10^{10} (v/v) aqueous StOH, 0.1×10^{10} (v/v) aqueous at Kanazawa University. Flash chromatography was performed according to the reported proce-

dure.¹⁴⁾ The following abbreviations are used: br=broad, d=doublet, dd=doublet-of-doublets, ddd=doublet-of-doublets-of-doublets-of-doublets, m=multiplet, s=singlet, sh=shoulder, t=triplet.

3,5-Dibromo-4-hydroxybenzaldehyde (17) A solution of Br₂ (30.2 g, 190 mmol) in AcOH (50 ml) was added dropwise to a stirred mixture of 4-hydroxybenzaldehyde (11.0 g, 90 mmol), AcONa (22.9 g, 279 mmol), and AcOH (150 ml) at room temperature over a period of 15 min. The mixture was stirred at room temperature for a further 1 h and concentrated *in vacuo*. The residue was triturated with H₂O (200 ml), and the insoluble solid was collected by filtration, washed with H₂O ($(23 \times 30 \text{ ml})$, and dried to give 17 (24.3 g, 96%), mp 181–183 °C. Recrystallization of this product from EtOH–H₂O (7: 3, v/v) afforded an analytical sample of **17** as colorless needles, mp 182–184 °C. MS *m/z*: 277, 279, 281 (M⁺). IR v_{max}^{Nijol} cm⁻¹: 3153 (OH), 1673 (C=O). ¹H-NMR (CDCl₃) δ : 6.43 (1H, br s, OH), 8.00 (2H, s, Br₂C₆H₂), 9.80 (1H, s, CHO). *Anal.* Calcd for C₇H₄Br₂O₂: C, 30.04; H, 1.44. Found: C, 30.12; H, 1.32.

4-Benzyloxy-3,5-dibromobenzaldehyde (18) NaH (of 60% purity) (1.00 g, 25.1 mmol) was washed with hexane (2×50 ml) and suspended in HCONMe₂ (100 ml). Compound **17** (6.38 g, 22.8 mmol) was added to this suspension to give a slightly yellow solution. A solution of PhCH₂Br (4.30 g, 25.1 mmol) in HCONMe₂ (30 ml) was then added to the solution, and the mixture was stirred at room temperature for 24 h. The resulting solution was concentrated *in vacuo*, and the residue was partitioned between 10% aqueous Na₂CO₃ (80 ml) and CHCl₃ (80 ml). The aqueous layer was extracted with CHCl₃ (80 ml). The CHCl₃ layers were combined, washed successively with 10% aqueous Na₂CO₃ (5×40 ml), 10% aqueous NaOH (2×40 ml), and saturated aqueous NaCl (40 ml), dried (MgSO₄), and concentrated *in vacuo*. The residual solid was recrystallized from EtOH–H₂O (7:3, v/v) to give **18** (2.92 g), mp 73—75 °C. The mother liquor was concentrated *in vacuo*, and the residue was participed for **18** (0.89 g), the total yield

was 69%) (mp 73—75 °C) was obtained by treatment of the mother liquor of the second recrystallization in a manner similar to that described for obtaining the second crop of **18**. Further recrystallization of crude **18** from EtOH–H₂O (7:3, v/v) provided an analytical sample of **18** as colorless needles, mp 78—79 °C. MS *m/z*: 368, 370, 372 (M⁺). IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1694 (C=O). ¹H-NMR (CDCl₃) δ : 5.12 (2H, s, PhCH₂), 7.35—7.70 (5H, m, PhCH₂), 8.06 (2H, s, Br₂C₆H₂), 9.88 (1H, s, CHO). *Anal.* Calcd for C₁₄H₁₀Br₂O₂: C, 45.44; H, 2.72. Found: C, 45.57; H, 2.81.

4-Benzyloxy-3,5-dibromobenzyl Alcohol (19) NaBH₄ (115 mg, 3.04 mmol) was added to a solution of **18** (746 mg, 2.02 mmol) in MeOH (10 ml), and the mixture was stirred at room temperature for 30 min. It was concentrated *in vacuo* after addition of acetone (1 ml). The residue was mixed with H₂O (20 ml), and the mixture was neutralized with 10% aqueous H₃PO₄ and extracted with CHCl₃ (4×20 ml). The CHCl₃ layers were combined, dried (MgSO₄), and concentrated *in vacuo* to leave **19** (736 mg, 98%), mp 95.5—96 °C. Recrystallization of this product from hexane afforded an analytical sample of **19** as colorless needles, mp 96—97 °C. MS *m/z*: 370, 372, 374 (M⁺). IR v_{max}^{Nujol} cm⁻¹: 3293 (OH). ¹H-NMR (CDCl₃) δ : 1.76 (1H, brt, *J*=5 Hz, CH₂OH), 4.65 (2H, d, *J*=5 Hz, CH₂OH), 5.03 (2H, s, PhCH₂), 7.35—7.63 (5H, m, <u>Ph</u>CH₂), 7.56 (2H, s, Br₂C₆H₂). *Anal.* Calcd for C₁₄H₁₂Br₂O₂: C, 45.20; H, 3.25. Found: C, 45.07; H, 3.27.

N-(4-Benzyloxy-3,5-dibromobenzyl)-8-oxoadenosine (10b) A solution of PBr₃ (870 mg, 3.21 mmol) in anhydrous Et_2O (3 ml) was added dropwise to a solution of **19** (2.00 g, 5.38 mmol) in Et_2O (25 ml) at 0 °C over a period of 5 min, and the mixture was stirred at 0 °C for a further 1 h. The resulting solution was diluted with Et_2O (25 ml), washed successively with saturated aqueous NaHCO₃ (2×30 ml), dried (MgSO₄) with stirring at room temperature for 1 h, and concentrated *in vacuo* to leave crude **20** (1.75 g) as a colorless oil.

A mixture of 13^{10a)} (205 mg, 0.724 mmol), 20 (410 mg, 0.943 mmol), and AcNMe₂ (6 ml) was stirred at 50 °C for 111 h and concentrated *in vacuo*. The residue was washed with Et₂O (30 ml) and heated in 1 N aqueous NaOH (5 ml) under reflux for 1 h. The solution was neutralized with 10% aqueous H₃PO₄, extracted with AcOEt (20 ml and then 3×10 ml). The organic layers were combined, dried (MgSO₄), and concentrated *in vacuo* to leave a colorless glass (368 mg). This was subjected to flash chromatography [AcOEt-EtOH (10:1, v/v)] to afford 10b (267 mg, 58%) as a colorless glass. ¹H-NMR [(CD₃)₂SO] δ : 3.46 (m), 3.61 (ddd, *J*=12, 4, 4Hz) [1H each, C(5')-H₂], 3.87 [1H, m, C(4')-H], 4.14 [1H, m, C(3')-H], 4.67 (2H, d, *J*=5.6Hz, NHCH₂), 4.88 [1H, ddd, *J*=6 Hz each, C(2')-H], 4.96 (2H, s, PhCH₂), 5.05 [1H, d, *J*=5 Hz, C(3')-OH], 5.09 [1H, d, *J*=6.5 Hz, C(1')-H], 7.12 (1H, br t, *J*=5.6 Hz, NHCH₂), 7.24—7.51 (5H, m, PhCH₂), 7.69 (2H, s, Br₂C₆H₂), 8.14 [1H, s, C(2)-H], 10.32 [1H, br s, N(7)-H].

N-(3,5-Dibromo-4-hydroxybenzyl)-8-oxoadenosine Monohydrate (15·H₂O) A suspension of 10b (100 mg, 0.157 mmol) in 1 N aqueous HCl (100 ml) was heated under reflux for 1 h. The resulting solution was neutralized with 8 N aqueous NaOH (12.5 ml), brought to pH 5 with 10% aqueous H₃PO₄, and kept at 4 °C overnight. The precipitate that resulted was collected by filtration, washed with H₂O (3 ml), and dried to give crude 15 · H₂O (46 mg, 52%), mp 164—168 °C (dec.). This was recrystallized from $\rm H_2O$ after purification by preparative TLC [silica gel, CHCl₃-MeOH (6:1. v/v)], dried (P2O5) at 2 mmHg and 50 °C for 15 h, and exposed to air until a constant weight was reached to afford an analytical sample of 15 H₂O as colorless needles, mp 167.5—169 °C (dec.). $[\alpha]_{D}^{25} - 34^{\circ}$ (c=0.248, MeOH). UV $\lambda_{max}^{95\% EIOH}$ 279 nm (ε 23000); $\lambda_{max}^{H,O}$ (pH 1) 284 (18200); $\lambda_{max}^{H,O}$ (pH 7) 211 (40000) 277 (22400) 204 ($\lambda_{max}^{H,O}$ (pH 7) 211 (49900), 277 (22400), 304 (sh) (4400); $\lambda_{\text{max}}^{\text{H},0}$ (pH 13) 289 (24100). IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1734, 1717 (C=O). ¹H-NMR [(CD₃)₂SO] δ : 3.47 (ddd, *J*=12.2, 4.9, 8.3 Hz), 3.61 (ddd, J=12.2, 3.9, 3.9 Hz) [1H each, C(5')-H₂], 3.86 [1H, ddd, J=4.9, 3.9, 2.9 Hz, C(4')-H], 4.14 [1H, ddd, J=2.9, 5.4, 4.9 Hz, C(3')-H], 4.58 (2H, d, J=5.9 Hz, CH₂NH), 4.87 [1H, ddd, J=5.4, 6.4, 6.4 Hz, C(2')-H], 5.06 [1H, d, J=4.9 Hz, C(3')-OH], 5.11 [1H, dd, J=8.3, 3.9 Hz, C(5')-OH], 5.23 [1H, d, J=6.4 Hz, C(2')-OH], 5.69 [1H, d, J=6.4 Hz, C(1')-H], 7.03 (1H, t, *J*=5.9 Hz, CH₂N<u>H</u>), 7.54 (2H, s, Br₂C₆H₂), 8.13 [1H, s, C(2)-H], 9.88 (1H, brs, Br₂C₆H₂OH), 10.31 [1H, brs, N(7)-H]. Anal. Calcd for C₁₇H₁₇Br₂N₅O₆·H₂O: C, 36.13; H, 3.39; N, 12.39. Found: C, 36.31; H, 3.17; N, 12.28.

N-(4-Benzyloxy-3,5-dibromobenzyl)-2'-deoxy-8-oxoadenosine (11b) A mixture of 2'-deoxy-8-oxoadenosine (14)¹³ (338 mg, 1.26 mmol), 20 (704 mg, 1.62 mmol), and AcNMe₂ (8 ml) was stirred at 50 °C for 141 h. The resulting slightly yellow solution was concentrated *in vacuo*, and the residue was washed with Et₂O (2×15 ml). Crude 9b thus obtained was heated under reflux in 1 N aqueous NaOH (10 ml) for 1 h. The solution was neutralized with 10% aqueous H₃PO₄ and extracted with AcOEt (20 ml). The organic layer was dried (MgSO₄) and concentrated *in vacuo* to leave a slightly yellow foam (734 mg). This was subjected to flash chromatography [AcOEt-EtOH (10:1, v/v)] to afford **11b** (584 mg, 74%) as a colorless foam. ¹H-NMR [(CD₃)₂SO] δ : 2.01 (ddd, *J*=13, 2.4, 6.8 Hz), 2.99 (ddd, *J*=13, 5.8, 8.3 Hz) [1H each, C(2')-H₂], 3.46 (ddd, *J*=12, 4.4, 7.8 Hz), 3.61 (ddd, *J*=12,

8.3 H2) [1H each, C(2)-H₂], 5.46 (ddd, J = 12, 4.4, 7.8 H2), 5.01 (ddd, J = 12, 4.4, 4.4 Hz) [1H each, C(5')-H₂], 3.81 [1H, ddd, J = 2.4, 4.4, 4.4 Hz, C(4')-H], 4.39 [1H, ddd, J = 2.4, 5.8, 2.4, 4.4 Hz, C(3')-H], 4.66 (2H, d, J = 5.9 Hz, NHC<u>H₂</u>), 4.96 (2H, s, PhC<u>H₂</u>), 5.07 [1H, dd, J = 7.8, 4.4 Hz, C(5')-OH], 5.20 [1H, d, J = 4.4 Hz, C(3')-OH], 6.16 [1H, dd, J = 6.8, 8.3 Hz, C(1')-H], 7.10 (1H, brt, J = 5.9 Hz, N<u>H</u>CH₂), 7.37—7.46 (3H), 7.53—7.59 (2H) (m each, <u>Ph</u>CH₂), 7.69 (2H, s, Br₂C₆H₂), 8.13 [1H, s, C(2)-H], 10.29 [1H, br s, N(7)-H].

N-(4-Benzyloxy-3,5-dibromobenzyl)-8-oxoadenine Hemihydrate (12b·1/2H₂O) A suspension of 11b (228 mg, 0.367 mmol) in 1 N aqueous HCl (30 ml) was heated under reflux for 10 min. The resulting suspension was cooled and neutralized with 8 N aqueous NaOH (3.75 ml). The insoluble solid was collected by filtration, washed with H₂O (5 ml), and dried to give crude 12b·1/2H₂O (170 mg, 90%), mp 234—235 °C (dec.). This was recrystallized from EtOH–H₂O (9:1, v/v) and dried (P₂O₅) at 2 mmHg and 80 °C for 20 h to afford an analytical sample of 12b·1/2H₂O as colorless needles, mp 250—251 °C (dec.). MS *m/z*: 503, 505, 507 (M⁺). UV $\lambda_{max}^{90\% EtOH}$ (0.1 N HCl) 282 nm (ϵ 17100); $\lambda_{max}^{90\% EtOH}$ 277 (22000); $\lambda_{max}^{90\% EtOH}$ (0.1 N NaOH) 286 (*ca.* 21000).¹⁵) IR *v*_{max}^{Nujol} cm⁻¹: 1732, 1717 (C=O). ¹H-NMR [(CD₃)₂SO] δ : 4.64 (2H, d, *J*=5.9 Hz, CH₂NH), 4.96 (2H, s, PhCH₂), 6.94 (1H, t, *J*=5.9 Hz, CH₂NH), 7.36—7.59 (5H, m, <u>Ph</u>CH₂), 7.69 (2H, s, Br₂C₆H₂), 8.06 [1H, s, C(2)-H], 9.86 [1H, br s, N(7)-H], 11.37 [1H, br s, N(9)-H]. *Anal.* Calcd for C₁₉H₁₅Br₂N₅O₂·1/2H₂O: C, 44.38; H, 3.14; N, 13.62. Found: C, 44.59; H, 3.06; N, 13.56.

N-(3,5-Dibromo-4-hydroxybenzyl)-8-oxoadenine (Aplidiamine) Monohydrate (16 · H₂O) A solution of 11b (240 mg, 0.386 mmol) in 1 N aqueous HCl (600 ml) was heated under reflux for 1 h and cooled to 40 °C. A small amount of $12b \cdot 1/2H_2O$ (5 mg), which remained undissolved, was filtered off at this temperature. The filtrate was neutralized by addition of 8 N aqueous NaOH (75 ml), and the mixture was adjusted to pH 5 with 10% aqueous H₃PO₄. After cooling the mixture at 0 °C overnight, the precipitate that deposited was collected by filtration, washed with H₂O (20 ml), and dried to give 16 · H₂O (130 mg, 78%), mp 231-232 °C (dec.). Recrystallization of this sample from EtOH-H₂O (7:3, v/v), followed by drying (P₂O₅) at 2 mmHg and 50 °C for 24 h and exposure to air at room temperature until a constant weight was reached, afforded an analytical sample of 16 · H₂O, mp 239–239.5 °C (dec.). MS m/z: 413, 415, 417 (M⁺). UV $\lambda_{max}^{90\% EtOH}$ (0.1 N HCl) 284 nm (ε 19000); $\lambda_{\text{max}}^{006 \text{ EIOH}}$ 277 (22400); $\lambda_{\text{max}}^{906 \text{ EIOH}}$ (0.1 N NaOH) 249 (sh) (ca. 13000),¹⁵ 288 (ca. 27000),¹⁵ 310 (sh) (ca. 7000).¹⁵ IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1717 (C=O). ¹H-NMR [(CD₃)₂SO] δ: 4.55 (2H, d, J=5.9 Hz, CH₂NH), 6.84 (1H, t, *J*=5.9 Hz, CH₂N<u>H</u>), 7.53 (2H, s, Br₂C₆H₂), 8.05 [1H, s, C(2)-H], 9.83 [1H, br s, N(7)-H], 9.87 (1H, br s, Br₂C₆H₂O<u>H</u>), 11.34 [1H, br s, N(9)-H]. ¹³C-NMR [(CD₃)₂SO] δ: 41.7 (CH₂NH), 104.5 [C(5)], 111.8 [C(3',5')], 131.2 [C(2',6')], 134.0 [C(1')], 145.1 [C(6)], 147.4 [C(4)], 149.5 [C(4')], 150.7 [C(2)], 152.5 [C(8)]. Anal. Calcd for C₁₂H₉Br₂N₅O₂·H₂O: C, 33.28; H, 2.56; N, 16.17. Found: C, 33.36; H, 2.55; N, 16.29.

Acknowledgment This work was supported by the Ministry of Education, Science, Sports and Culture, Japan, under a Grant-in-Aid for Encouragement of Young Scientists (No. 10771244 to T. K.). We thank Professor W. Fenical (University of California, San Diego) for providing us with spectral copies of natural aplidiamine.

References and Notes

- a) Robins R. K., J. Am. Chem. Soc., 80, 6671–6679 (1958); b) Fujii T., Saito T., Chem. Pharm. Bull., 21, 1954–1959 (1973).
- Holmes R. E., Robins R. K., J. Am. Chem. Soc., 87, 1772–1776 (1965).
- Fujii T., Saito T., Mori S., Chem. Pharm. Bull., 38, 2146–2150 (1990).
- Cimino G., De Giulio A., De Rosa S., De Stefano S., Puliti R., Mattia C. A., Mazzarella L., *J. Nat. Prod.*, 48, 523–528 (1985).
- Zelnik R., Haraguchi M., Matida A. K., Lavie D., Frolow F., Weis A. L., J. Chem. Soc., Perkin Trans. 1, 1986, 2051–2053.
- a) Saito T., Mori S., Chikazawa J., Kanai T., Fujii T., Chem. Pharm. Bull., 41, 1746–1752 (1993); b) Itaya T., Takada Y., Kanai T., Fujii T., *ibid.*, 45, 1867–1869 (1997).
- a) Uramoto M., Kim C.-J., Shin-ya K., Kusakabe H., Isono K., Phillips D. R., McCloskey J. A., *J. Antibiot.*, 44, 375–381 (1991); b) Matsuura N., Onose R., Osada H., *ibid.*, 49, 361–365 (1996).

- 8) Kang H., Fenical W., Tetrahedron Lett., 38, 941-944 (1997).
- A preliminary communication of this work has been published: Itaya T., Hozumi Y., Kanai T., Ohta T., *Tetrahedron Lett.*, **39**, 4695–4696 (1998).
- a) Saito T., Kanai T., Fujii T., *Chem. Pharm. Bull.*, **41**, 1850—1852 (1993); b) Itaya T., Takada Y., Kanai T., Fujii T., *ibid.*, **44**, 2318—2321 (1996).
- 11) Kassühlke K. E., Faulkner D. J., Tetrahedron, 47, 1809-1814 (1991).
- 12) Fujii T., Saito T., Iguchi K., *Chem. Pharm. Bull.*, **42**, 495–499 (1994) and earlier references cited therein.
- Wood M. L., Esteve A., Morningstar M. L., Kuziemko G. M., Essigmann J. M., *Nucleic Acids Res.*, **20**, 6023–6032 (1992).
- 14) Still W. C., Kahn M., Mitra A., J. Org. Chem., 43, 2923-2925 (1978).
- 15) The transparency of the solution was not enough to secure an accurate value.