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Synthesis of J-111,347 (1),1) a new 1bb-methylcarbapenem with
broad-spectrum antibacterial activity including that against 
methicillin-resistant Staphylococcus aureus (MRSA) and
Pseudomonas aeruginosa, was achieved via diastereoselective
preparation of a side-chain thiol 3 from an optically active (R)-
3,4-dihydroxybutanal 4. 

Key words J-111,347; carbapenem; MRSA; P. aeruginosa; diastereose-
lective preparation

Several 1b-methylcarbapenems possessing antibacterial
activities against MRSA have been reported, although these
did not show any appreciable anti-pseudomonal activity.2)

Carbapenems with activity against MRSA and P. aeruginosa
would be useful for monotherapy in immunocompromised
patients with a high risk of polymicrobial infections and
would also offer cost-benefit advantages considering the rela-
tively high costs of combination therapy that includes broad-
spectrum antibiotics plus vancomycin.

Recently, we identified J-111,347 (1) as a new class of 1b-
methylcarbapenems since 1 exhibited a broad antibacterial
spectrum against MRSA and P. aeruginosa.1) 1 and van-
comycin had MIC (mg/ml) values of 0.78 and 0.78 against S.
aureus pMS/Smith (an MRSA strain), respectively. Also 
1 and imipenem had MIC (mg/ml) values of 0.39 and 
1.56 against P. aeruginosa AK109, respectively. The trans-
(3S,5R) pyrrolidinylthio structure of the C-2 side chain of 1
is unique, since the known pyrrolidinylthio-1b-methylcar-
bapenems such as meropenem, BO-2727, and S-4661 pos-
sess cis-(3S,5S) pyrrolidinylthio side chains, which were
thought to be indispensable for potent antibacterial activ-
ity.3,4) An aminomethylphenyl group directly attached to the
pyrrolidine ring in the trans-configuration might play an im-
portant role in the remarkable antibacterial activities of 1
against both MRSA and P. aeruginosa. In this paper, we de-
scribe diastereoselective synthesis of the side-chain thiol 3,
followed by conversion to 1 (Fig. 1).

Aldol reaction of optically active (R)-3,4-dihydroxybu-
tanal 45) with substituted phenyllithium yielded an insepara-

ble diastereomeric mixture of alcohols (5(S) : 5(R)54 : 3) in
88% yield. To obtain the desired isomer 5(S), we performed
diastereoselective reduction of ketone 6 which was formed
by the oxidation of 5 with tetrapropylammonium perruthen-
ate (TPAP)-4-methylmorpholine N-oxide (NMO) combina-
tion in good yield. It is well known that hydride reduction of
b-hydroxy- or b-alkoxy-ketones proceeds diastereoselec-
tively in the presence of Lewis acid to provide a 1,3-syn-diol
system via chelating intermediates.6) Based on this informa-
tion, ketone 6 was reduced under various conditions with or
without Lewis acids, as shown in Table 1. Reduction with
NaBH4 did not provide acceptable diastereoselectivity, re-
gardless of the temperature and the presence of Lewis acids
such as LiI, CeCl3, MgCl2, and SmCl3. Reduction with
Zn(BH4)2 at low temperature (278 °C) resulted in good se-
lectivity with moderate yield (entry 2, 76%de, 60% yield).
Under the conditions of the LiAlH4–LiI system,7) good selec-
tivity and acceptable yield (entry 5, 90%de, 76% yield) were
obtained by using 10 mol of LiI at 278 °C. When less LiI
was used, both selectivity and yield were decreased (entry 3,
4). Subsequently, the optically active alcohol 5(S) was con-
verted to a carbapenem 1, as shown in Chart 2. The sec-
ondary hydroxyl group of 5(S) was substituted with sodium
azide via its mesylate. Subsequent phosphine reduction of
azide and protection of the resulting amino group with ally-
loxycarbonyl (Alloc) chloride afforded an Alloc-amine 7.
Removal of the tert-butyldimethylsilyl (TBS) group of 7 with
tetra-n-butylammonium fluoride (TBAF) and subsequent in-
troduction of the azide group gave 8 in 91% yield. The azide
8 was transformed to a diol 9 in 78% yield by reduction of
the azide, Alloc-protection of the resulting primary amine,
and deprotection of the acetonide group under acidic condi-
tions ( p-TsOH, MeOH).10) Selective tosylation of the pri-
mary hydroxyl group of the 1,2-diol 9 proceeded in good
yield (TsCl, triethylamine [TEA], 4-[dimethylamino]pyridine
[DMAP], [80%]) to give a tosylate 10. When 10 was treated
under basic conditions, pyrrolidine ring formation did not
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Table 1. Diastereoselective Reduction of 6

Entry Reagent
Additive

Solvent
Temp. Yielda) Ratio of

(equiv.) (°C) (%) 5(S) and 5(R)b)

1 NaBH4 None MeOH 0 47 48 : 52
2 Zn(BH4)2 None Et2O 278 60 88 : 12
3 LiAlH4 LiI (2) Et2O 278 44 76 : 24
4 LiAlH4 LiI (5) Et2O 278 51 90 : 10
5 LiAlH4 LiI (10) Et2O 278 76 95 : 5

a) Isolated yield as a mixture of 5(R) and 5(S). b) Determined by HPLC (DAI-
CEL CHIRALPAK AS).8)

Chart 1Fig. 1



take place to recover 10, probably due to inactivation of 
the carbamate group by intramolecular hydrogen bonding.
Therefore the secondary hydroxyl group of 10 was protected
with a TBS group (TBS-Cl, imidazole, room temperature,
60%), giving 11 prior to the cyclization reaction. The desired
pyrrolidine 13 was obtained in quantitative yield by treat-
ment of 11 with tert-BuOK at 220 °C. Next, pyrrolidine ring
formation was carried out using a dimesylate of the diol 9.
As expected, the dimesylate 12 was easily cyclized under the
same conditions to afford 4-mesyloxypyrrolidine 14 (97%
yield), which was then treated with potassium thioacetate in
DMF at 70 °C to produce the thioacetate 15 (87% yield).
Coupling reaction of the carbapenem enolphosphate 211) and
the thiol 3 derived by alkaline hydrolysis of the thioacetate
15 followed by deprotection of the coupling product12) in the
usual manner13) afforded the carbapenem 1 in 72% yield.

In summary, an efficient method for the synthesis of J-
111,347 (1), a new carbapenem showing broad-spectrum an-
timicrobial activity, was established via diastereoselective re-
duction of the ketone 6 and intramolecular cyclization of the
dimesylate 12.
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25 227.4 (c 1.0, CHCl3); IR lmax (Nujol) 3461, 1257 cm21;
1H-NMR (300 MHz, CDCl3) d 0.08 (6H, s), 0.92 (9H, s), 1.36 (3H, s),
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8.5, 4.2 Hz), 7.27 (2H, d, J58.5 Hz), 7.32 (2H, d, J58.5 Hz); FAB-
HRMS m/z Calcd for C20H34O4SiNa (M1Na)1: 389.2124, Found:
389.2112.
1: IR nmax (KBr) 3421, 1749, 1646, 1558 cm21; 1H-NMR (300 MHz,
D2O) d 1.22 (3H, d, J57.0 Hz), 1.27 (3H, d, J56.5 Hz), 2.51 (1H, m),
2.73 (1H, m), 3.40 (3H, m), 3.86 (1H, dd, J512.5, 6.0 Hz), 4.25 (5H,
m), 5.03 (1H, dd, J510.5, 7.0 Hz), 7.20 (4H, m); FAB-HRMS m/z
Calcd for C21H28N3O4S (M1H)1: 418.1801, Found: 418.1800; UV
lmax 298 (e 9520). 
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