Synthesis of 2-Substituted 3-Nitro-1,2-dihydropyridines by Heterocyclic Annulation Reactions of a sec-Nitrodienamine with Aldehyde Compounds

Takeshi Koike,* Yoshifumi Shinohara, Noriko Ishibashi, Naoki Takeuchi, and Seisho Tobinaga
Showa Pharmaceutical University, Higashitamagawagakuen 3-3165, Machida, Tokyo 194-8543, Japan.
Received September 27, 1999; accepted December 16, 1999

Abstract

The reaction of a sec-nitrodienamine 3 with aldehyde compounds afforded 2-substituted 3-nitro-1,2-dihydropyridines 5 , providing a heterocyclic annulation reaction.

Key words nitrodienamine; aldehyde; 2-substituted 3-nitro-1,2-dihydropyridine; heterocyclic annulation reaction

We are interested in the reactivities of tert-nitrodienamines [ex. 1-(N,N-dimethylamino)-4-nitro-1,3-butadiene 1] and secnitrodienamines [ex. 4-nitro-1-(2-phenethylamino)-1,3-butadiene 3] as potentially useful synthons in organic synthesis. The chemistry of nitrodienamines exploits in the enaminic, dienic, and electronic "push pull" character of these molecules, and leads to interesting cycloaddition reactions as well as aminodienyl esters and aminoacrylate synthons. ${ }^{1-4)}$ The reactions of a sec-nitrodienamine, 4-nitro-1-(2-phenethy-lamino)-1,3-butadiene 3, with aldehyde compounds 4 afforded 2-substituted 3-nitro-1-(2-phenethyl)-1,2-dihydropyridines 5, which provide a heterocyclic annulation reaction.

Dihydropyridine chemistry is of interest from the point of view of pure research on heterocyclic compounds and also from a biological point of view. ${ }^{5)}$ Regarding studies on dihydropyridines, we recently reported the synthesis of 1 -substituted 2-methyl-3-nitro-1,2-dihydropyridines by the reaction of sec-nitrodienamines with acetaldehyde (4a) in good yield. ${ }^{1 d)}$ Here, we describe full details of the heterocyclic annulation reactions of $\mathbf{3}$ with aldehydes $\mathbf{4}$ to prepare 2 -substituted 3-nitro-1-(2-phenethyl)-1,2-dihydropyridines 5 (Chart 1). The sec-nitrodienamine 3 was prepared by the reaction of tert-nitrodienamine 1 with 2-phenethylamine in benzene at room temperature in 95% yield. ${ }^{1 d)}$

The reaction of $\mathbf{3}$ with propionaldehyde (4b) under neat refluxing conditions provided 2-ethyl-3-nitro-1-(2-phenethyl)1,2 -dihydropyridine ($\mathbf{5 b}$) in 82% yield. The structure of the product $5 \mathbf{b}$ was confirmed on the basis of the following spectroscopic analyses. The molecular formula of $\mathbf{5 b}$ was found to be $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$. The ${ }^{1} \mathrm{H}$-NMR spectrum indicated the presence of two methylene protons at $\delta 2.92(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz})$, $3.58(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz})$,
and aromatic protons at $\delta 7.09-7.26(5 \mathrm{H}, \mathrm{m})$ due to a phenethyl group, ethyl protons at $\delta 0.91(3 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}$, $\mathrm{Me})$ and $1.38-1.92(2 \mathrm{H}, \mathrm{m})$, a methine proton at $\delta 5.05$ $(1 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz})$, and three olefinic protons at $\delta 4.83(1 \mathrm{H}$, $\mathrm{dd}, J=7.5,6.4 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$ and $7.65(1 \mathrm{H}, \mathrm{d}$, $J=7.5 \mathrm{~Hz}$) due to a 1,2 -dihydropyridine ring. The IR spectrum of 5b showed absorption bands at $1624,1541,1516$, 1474,1456 , and $1360 \mathrm{~cm}^{-1}$ due to nitro, two olefinic, and phenethyl groups.

In a similar manner, several other 2-substituted 3-nitro-1-(2-phenethyl)-1,2-dihydropyridines $\mathbf{5 c}-\mathbf{g}$ listed in Table 1 were prepared from the corresponding $\mathbf{4 c}-\mathbf{g}$ (Chart 1, Table 1).

Unexpectedly, treatment of the sec-nitrodienamine 3 with 35% formaldehyde solution (4h) in tetrahydrofuran (THF) afforded 2-methyl-3-nitro-1-(2-phenethyl)-1,2-dihydropyridine (5a) and 3-nitro-2-(3-nitrophenyl)-1-(2-phenethyl)-1,2-dihydropyridine (5i) in 2% and 8% yields, respectively. The heterocyclic annulation reactions of $\mathbf{3}$ with aldehydes may be explained as follows. Initially, the hydrolysis reaction of $\mathbf{3}$ may generate acetaldehyde (4a) via intermediate 6a, and self-condensation reaction of $\mathbf{3}$ may generate 3-nitrobenzaldehyde (4i) via intermediate 6i. Then, the condensation reactions of 3 with $\mathbf{4 a}$ and $\mathbf{4 i}$, followed by intramolecular ring closure with dehydration could lead to 1,2-dihydropyridines 5a and $\mathbf{5 i}$, respectively, as shown in Chart 2.

These results provide a method of synthesizing 2 -substituted 3-nitro-1,2-dihydropyridines 5 by utilizing sec-nitrodienamine 3 with aldehyde compounds 4.

1

Chart 1

Table 1. The Heterocyclic Annulation Reactions of sec-Nitrodienamine $\mathbf{3}$ with Aldehyde Compounds 4

5

Starting amine	R	Reaction temp. $\left({ }^{\circ} \mathrm{C}\right)$	Reaction time (h)	Reaction product	Yield (\%)	${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm})$	IR (cm^{-1})
4 a	$\mathrm{Me}-$	25	1.2	5 a	92	$1.19(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{Me}), 2.94(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}$, methylene H), $3.46(1 \mathrm{H}, \mathrm{dt}, J=13.9,6.9 \mathrm{~Hz}$, methylene H$), 3.68(1 \mathrm{H}, \mathrm{dt}, J=13.9$, 6.9 Hz , methylene H), $4.85(1 \mathrm{H}, \mathrm{dd}, J=7.4,6.2 \mathrm{~Hz}$, olefinic H), $5,12(1 \mathrm{H}, \mathrm{q}, J=6.2 \mathrm{~Hz}$, methine H$), 6.46(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}$, olefinic H), $7.05-7.33(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.58(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}$, olefinic H)	$\begin{aligned} & 1616,1514, \\ & 1481,1435, \\ & 1358,1325, \\ & \text { (neat) } \end{aligned}$
4b	$\mathrm{Me}-\mathrm{CH}_{2}-$	Reflux	39	5b	82	$0.91(3 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Me}), 1.38-1.92(2 \mathrm{H}, \mathrm{m}$, methylene H), 2.92 $(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}$, methylene H), $3.58(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H), $3.64(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H$), 4.83(1 \mathrm{H}$, dd, $J=7.5,6.4 \mathrm{~Hz}$, olefinic H), $5.05(1 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}$, methine H), $6.53(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, olefinic H$), 7.09-7.26(5 \mathrm{H}, \mathrm{m}$, aromatic H$)$, $7.65(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}$, olefinic H)	$\begin{aligned} & 1624,1541, \\ & 1516,1474, \\ & 1456,1360, \\ & \text { (neat) } \end{aligned}$
4c		25	7	5c	59	$2.89(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}$, methylene H$), 3.35(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H$), 3.60(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H$), 4.82$ $(1 \mathrm{H}, \mathrm{dd}, J=7.5,6.7 \mathrm{~Hz}$, olefinic H), $6.01(1 \mathrm{H}, \mathrm{s}$, methine H), 6.59 $(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, olefinic H$), 7.10(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, aromatic H), $7.23-7.35(6 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.45(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, aromatic H), $7.75(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}$, olefinic H)	$\begin{aligned} & 1620,1505, \\ & 1495,1460, \\ & 1420,1590, \\ & \text { (neat) } \end{aligned}$
4d		25	26	5d	53	$2.88(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}$, methylene H$), 3.31(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H), $3.55(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H$), 3.78$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.80(1 \mathrm{H}, \mathrm{dd}, J=7.5,6.3 \mathrm{~Hz}$, olefinic H$), 5.95(1 \mathrm{H}, \mathrm{s}$, methine H), $6.57(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}$, olefinic H), $6.84(2 \mathrm{H}, \mathrm{d}, J=8.8$ Hz , aromatic H), $7.06-7.30(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.38(2 \mathrm{H}, \mathrm{d}, J=$ 8.8 Hz , aromatic H$), 7.74(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}$, olefinic H)	$\begin{aligned} & 1605,1585, \\ & 1515,1500, \\ & 1495,1485, \\ & \text { (neat) } \end{aligned}$
4e		25	15	5e	44	$2.88(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}$, methylene H$), 3.34(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H), $3.59(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H$), 4.82(1 \mathrm{H}$, dd, $J=7.5,6.4 \mathrm{~Hz}$, olefinic H), $5.97(1 \mathrm{H}, \mathrm{s}$, methine H$), 6.60(1 \mathrm{H}, \mathrm{d}$, $J=6.4 \mathrm{~Hz}$, olefinic H), $7.08-7.43(9 \mathrm{H}, \mathrm{m}$, aromatic H), $7.72(1 \mathrm{H}, \mathrm{d}$, $J=7.5 \mathrm{~Hz}$, olefinic H)	$\begin{aligned} & 1615,1510, \\ & 1490,1460, \\ & 1450,1440, \\ & \text { (neat) } \end{aligned}$
4 f		25	15	5 f	57	$2.91(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}$, methylene H$), 3.43(2 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H), $4.90(1 \mathrm{H}, \mathrm{dd}, J=7.5,6.4 \mathrm{~Hz}$, olefinic H$), 6.09(1 \mathrm{H}, \mathrm{s}$, methine H), $6.69(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, olefinic H), $7.03-7.32(5 \mathrm{H}, \mathrm{m}$, aromatic H), $7.60(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, aromatic H$), 7.72(1 \mathrm{H}, \mathrm{d}, J=7.5$ Hz , olefinic H), $8.17(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, aromatic H)	$\begin{aligned} & \text { 1620, 1520, } \\ & 1485,1455, \\ & 1445,1395, \\ & \text { (neat) } \end{aligned}$
4g		25	39	5 g	5	$2.98(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}$, methylene H$), 3.50(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H), $3.74(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H$), 4.85(1 \mathrm{H}$, dd, $J=7.3,6.7 \mathrm{~Hz}$, olefinic H), $5.65(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$, methine H), $6.19(1 \mathrm{H}, \mathrm{dd}, J=15.9,7.0 \mathrm{~Hz}$, olefinic H), $6.62(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, olefinic H), $7.03-7.37(11 \mathrm{H}, \mathrm{m}$, aromatic and olefinic H$), 7.64(1 \mathrm{H}$, d, $J=7.3 \mathrm{~Hz}$, olefinic H)	$\begin{aligned} & 1615,1545, \\ & 1510,1495, \\ & 1480,1460, \\ & \text { (neat) } \end{aligned}$
4h	H-	25	1	$\begin{gathered} \mathbf{5 a} \\ \mathrm{R}=\mathrm{Me}- \end{gathered}$	2	$1.19(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{Me}), 2.94(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}$, methylene H$)$, $3.46(1 \mathrm{H}, \mathrm{dt}, J=13.9,6.9 \mathrm{~Hz}$, methylene H$), 3.68(1 \mathrm{H}, \mathrm{dt}, J=13.9$, 6.9 Hz , methylene H), $4.85(1 \mathrm{H}, \mathrm{dd}, J=7.4,6.2 \mathrm{~Hz}$, olefinic H), 5.12 $(1 \mathrm{H}, \mathrm{q}, J=6.2 \mathrm{~Hz}$, methine H), $6.46(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}$, olefinic H), $7.05-7.33(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 7.58(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}$, olefinic H)	$\begin{aligned} & \text { 1616, 1514, } \\ & 1481,1435, \\ & \text { 1358, 1325, } \\ & \text { (neat) } \end{aligned}$
					8	$2.91(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}$, methylene H$), 3.43(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H), $3.57(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}$, methylene H$), 5.04(1 \mathrm{H}$, $\mathrm{t}, J=6.7 \mathrm{~Hz}$, olefinic H), $6.05(1 \mathrm{H}, \mathrm{s}$, methine H$), 7.00(1 \mathrm{H}, \mathrm{d}, J=6.7$ Hz , olefinic H), $7.22(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, aromatic H), $7.37-7.43(3 \mathrm{H}$, m , aromatic H$), 7.53(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}$, aromatic H$), 7.77(1 \mathrm{H}, \mathrm{d}, J=$ 7.9 Hz , aromatic H$), 7.81(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, olefinic H$), 8.18(1 \mathrm{H}, \mathrm{d}$, $J=7.9 \mathrm{~Hz}$, aromatic H$), 8.30(1 \mathrm{H}, \mathrm{s}$, aromatic H)	$\begin{aligned} & \text { 1668, 1620, } \\ & 1529,1454, \\ & 1392,1352, \\ & \text { (neat) } \end{aligned}$

Experimental

All melting points were determined on a Yanagimoto melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO FT/IR-200 or JASCO FT/IR-8000 spectrometer, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra on a JEOL EX90 or JEOL JNM- $\alpha 500$ spectrometer with tetramethylsilane as internal standard. MS were recorded on a JEOL JMS-D 300 spectrometer. Silica gel 60 (Cica-Merck) and NH-DM 1020 (basic $100 \AA$ type silica gel, Fuji Silysia Chemical, Ltd.) were used for column chromatography and thin layer chromatography (TLC), respectively. All reactions were carried out under an argon atmosphere.

General Procedure for Reactions of 4-Nitro-1-(2-phenethylamino)-1,3-butadiene (3) with Aldehyde Compounds 4 A solution of sec-nitrodienamine $3(40 \mathrm{mg}, 0.183 \mathrm{mmol})$ with the aldehyde compound 4 and 2phenethylamine (2 drops) in a liquid reaction mixture (no solvent) or THF (3 ml) in a sealed tube was stirred at room temperature or refluxed for an appropriate period until the disappearance of $\mathbf{3}$ (checked by TLC). The reaction mixture was concentrated under vacuum, and the residue subjected to silica gel column chromatography. The isolated yield of $\mathbf{5}$ is based on $\mathbf{3}$. The reaction conditions and properties of the prepared compounds 5 are shown in Table 1.
2-Methyl-3-nitro-1-(2-phenethyl)-1,2-dihydropyridine (5a): ${ }^{1 d)}$ Aldehyde 4a: 0.4 ml (7.16 mmol). Reaction solvent: THF. Solvent for chromatography: 20% ethyl acetate in hexane. Product 5a: 41 mg , dark red oil. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 15.4,35.9,52.5,56.4,93.5,126.7,127.1,128.7$, 128.8, 133.2, 137.1, 146.6. This product was identical with an authentic sample on the basis of IR, MS and NMR spectral comparisons.

2-Ethyl-3-nitro-1-(2-phenethyl)-1,2-dihydropyridine (5b): Aldehyde 4b: 1063 mg (18.3 mmol). Reaction solvent: no solvent. Solvent for chromatography: 15% ethyl acetate in hexane. Product 5b: 39 mg , dark red oil. Highresolution EI MS m/z: Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 258.1367. Found: 258.1357.

3-Nitro-1-(2-phenethyl)-2-phenyl-1,2-dihydropyridine (5c): Aldehyde 4c: $1942 \mathrm{mg}(18.3 \mathrm{mmol})$. Reaction solvent: no solvent. Solvent for chromatography: 20% ethyl acetate in hexane. Product 5 c: 33 mg , dark red oil. High-
resolution EI MS m/z: Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 306.1368. Found: 306.1371.

2-(4-Methoxyphenyl)-3-nitro-1-(2-phenethyl)-1,2-dihydropyridine (5d): Aldehyde 4d: 2492 mg (18.3 mmol). Reaction solvent: no solvent. Solvent for chromatography: 15\% ethyl acetate in hexane. Product 5d: 32 mg , dark red oil. High-resolution EI MS m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 336.1471. Found: 336.1453.

2-(4-Chlorophenyl)-3-nitro-1-(2-phenethyl)-1,2-dihydropyridine (5e): Aldehyde $\mathbf{4 e}$: $515 \mathrm{mg}(3.66 \mathrm{mmol})$. Reaction solvent: THF. Solvent for chromatography: 40% hexane in chloroform. Product 5e: 28 mg , dark red oil. High-resolution EI MS m/z: Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{1}\left(\mathrm{M}^{+}\right): 340.0979$. Found: 340.0986

3-Nitro-2-(4-nitrophenyl)-1-(2-phenethyl)-1,2-dihydropyridine (5f): Aldehyde $\mathbf{4 f}$: $24 \mathrm{mg}(0.16 \mathrm{mmol})$. Reaction solvent: THF. Solvent for chromatography: 40% hexane in chloroform. Product 5f: 37 mg , dark red oil. High-resolution EI MS m/z: Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 351.1218. Found: 351.1248.

3-Nitro-1-(2-phenethyl)-2-(trans-2-phenylvinyl)-1,2-dihydropyridine (5g): Aldehyde $\mathbf{4 g}$: 484 mg (3.66 mmol). Reaction solvent: THF. Solvent for chromatography: 40% hexane in chloroform. Product $5 \mathrm{~g}: 3 \mathrm{mg}$, dark red oil. CIMS m/z: $333\left(\mathrm{M}^{+}+1\right)$.
2-Methyl-3-nitro-1-(2-phenethyl)-1,2-dihydropyridine (5a) ${ }^{1 d)}$ and 3-Nitro-2-(3-nitrophenyl)-1-(2-phenethyl)-1,2-dihydropyridine (5i): Aldehyde 4h: $47.2 \mu \mathrm{l}(35 \%$ formaldehyde, 0.60 mmol$)$. Reaction solvent: THF. Solvent for chromatography: 20\% ethyl acetate in hexane. First eluated product 5a: 1 mg , dark red oil. This product was identical with an authentic sample on the basis of IR, MS and NMR spectral comparisons. Second eluated product 5i: 2 mg , dark red oil. CI-MS $m / z: 352\left(\mathrm{M}^{+}+1\right)$. (The sec-nitrodienamine 3 was almost completely decomposed under these conditions.)

References

1) a) Takeuchi N., Ohki J., Tobinaga S., Chem. Pharm. Bull., 36, 481487 (1988); b) Takeuchi N., Tanabe M., Hagiwara M., Goto K., Koike T., Tobinaga S., Heterocycles, 38, 613-627 (1994); c) Koike T., Hagi-
wara M., Takeuchi N., Tobinaga S., ibid., 45, 1271—1280 (1997); d) Koike T., Shinohara Y., Tanabe M., Takeuchi N., Tobinaga S., Chem. Pharm. Bull., 47, 1246-1248 (1999); e) Koike T., Takeuchi N., Hagiwara M., Yamazaki K., Tobinaga S., Heterocycles, 51, 2687-2695 (1999).
2) Rajappa S., Tetrahedron, 37, 1453-1480 (1981).
3) a) Severin T., Ipach I., Chem. Ber., 109, 3541-3546 (1976); b) Idem, ibid., 111, 692-697 (1978).
4) a) Koike T., Tanabe M., Takeuchi N., Tobinaga S., Chem. Pharm.

Bull., 45, 243-248 (1997); b) Idem, ibid., 45, 27-31 (1997); c) Idem, ibid., 45, 1117-1119 (1997); d) Koike T., Takeuchi N., Tobinaga S., ibid., 46, 1497-1500 (1998); e) Idem, ibid., 47, 128-130 (1999).
5) a) Hantzsch A., Justus Liebigs Ann. Chem., 215, 1-82 (1882); b) Eisner U., Kuthan J., Chem. Rev., 72, 1-42 (1972); c) Kuthan J., Kurfürst A., Ind. Eng. Chem. Prod. Res. Dev., 1982, 191-261; d) Stout D. M., Meyers A. I., Chem. Rev., 82, 223-243 (1982).

