Influence of the Conformation of Methoxy-(2-naphthyl)acetates (2NMA Esters) on Their Chemical Reactions

Shu-ichi FUKUYOSHI, Takashi OOI, and Takenori KUSUMI*

Faculty of Pharmaceutical Sciences, Tokushima University, Tokushima 770–8505, Japan.
Received January 13, 2000; accepted April 12, 2000

An S_N2 reaction (NaI) of 1,7-di(methanesulfoxyl)heptadien-4-yl methoxy-(2-naphthyl)acetate and a tributyltin hydride reduction of 1,7-diiodo-4-yl methoxy-(2-naphthyl)acetate (2NMA) is crucial for determination of the absolute configuration of secondary alcohols.

Key words 2NMA; chiral anisotropic reagent; conformation; steric effect

Methoxy-(2-naphthyl)acetic acid (2NMA)\(^{1-2}\) is a potent chiral anisotropic reagent used for the determination of the absolute configuration of secondary alcohols. The methodology is based on the stable conformation of the 2NMA ester (Fig. 1[A]), in which the carbinyl proton, methoxy, and carbonyl oxygen are oriented in the same plane, causing the upfield proton chemical shifts of the R group, which is on the same side as the naphthyl group, in the 1H-NMR spectrum. This conformation of the 2NMA esters has been confirmed by X-ray crystallography\(^2\) and molecular dynamics calculations.\(^3\)

It would be interesting to know if this stable conformation of the 2NMA moiety can influence chemical reactions carried out on the type [B compounds], in which two substituents (R) of the carbinol part are identical. This paper reports that the conformation of the 2NMA moiety does actually affect the course of organic reactions.

At first, an S_N2 reaction of dimesylate (1) with sodium iodide was examined. The dimesylate was prepared by the following procedure: Commercially available 1,6-heptadien-4-ol was condensed with racemic 2NMA (EDC, DMAP, CH\(_2\)Cl\(_2\)), followed by hydroboration ((CH\(_3\))\(_2\)S·BH\(_3\), THF) to give the diol, which afforded dimesylate (1) by treatment with mesyl chloride in pyridine.

A solution of the dimesylate (1; 9.5 µmol) and sodium iodide (2.4 eq) in deuteroacetone (0.5 ml) was placed in a 5 mm-NMR tube, and the reaction course was monitored by recording the 1H-NMR spectra at 32 °C. The syn- (to the 2-naphthyl group) and anti-side mesyloxymethylene (CH\(_2\)OMs) signals of 1 were easily distinguished by their chemical shifts:1—2) the syn-side CH\(_2\) signal appeared further upfield (\(\delta\) 3.84) than that of the anti-side CH\(_2\) (\(\delta\) 4.27) due to the strong anisotropic effect of the naphthalene ring.

The reaction course is shown in Fig. 2a. The signal intensities of the syn-side (closed square) and anti-side (closed triangle) methylene protons are plotted against reaction time. As can be seen in the graph, there is a significant difference in the reaction rate between the syn-CH\(_2\) and anti-CH\(_2\). The signal of the latter decreases more rapidly than that of the former (k_{anti}/k_{syn} = 1.83).

The same tendency was observed (Fig. 2b) in a radical reaction performed on diiodide (4). The iodide was obtained by treating 1 with sodium iodide in acetone. As in the case of dimesylate (1), the proton NMR (C\(_6\)D\(_6\)) signals of syn-CH\(_2\)I and anti-CH\(_2\)I of 4 appeared upfield (\(\delta\) 2.42) and downfield (\(\delta\) 2.60), respectively. A solution of 4, tributyltin hydride (TBTH) (2.4 eq), and a small amount of a,a‘-azobisisobutyronitrile (AIBN) in C\(_6\)D\(_6\) was sealed in an NMR tube under an argon atmosphere, and the tube was placed in a water bath (30 °C). The 1H-NMR spectra were recorded at 60 minute intervals, and the results are shown in Fig. 2b. The intensity of the syn-CH\(_2\)I decreases more quickly than that of the anti-CH\(_2\)I (k_{anti}/k_{syn} = 1.13).

These phenomena can be explained by the stable conformation of the 2NMA ester (Fig. 3[A]). The naphthyl group prevents the approach of the reagents (NaI and TBTH) from the syn-side. When the iodide anion attacks the syn-CH\(_2\)OMs from the remoter side of the 2NMA moiety, the leaving me-
sylox group may also be hindered by the naphthyl group, thus resulting in the larger $k_{\text{anti}}/k_{\text{syn}}$ value than that of the tin hydride reduction.

We next examined the epoxidation reaction of a diallyl compound (8) by treatment with 2 eq of m-chloroperbenzoic acid (MCPBA) in CDCl$_3$. In this experiment, the intensity of the vinyl proton ($\text{H}_2\text{C}=\text{CH}_2$: $\delta_{\text{syn-H}} 5.44$, $\delta_{\text{anti-H}} 5.70$) signals of 8 was monitored. The results are shown in Fig. 2c. Surprisingly, the intensity of the syn-proton decreased faster than that of the anti-proton ($k_{\text{syn}}/k_{\text{anti}} = 0.84$) unlike the SN_2 reaction and the butyltin hydride reduction. When the reaction was worked up after 20 h, syn-epoxide (9), anti-epoxide (10), and diepoxide were isolated in a 6 : 4 : 5 ratio.

Although the preferential epoxidation of the syn-vinyl group is difficult to explain one possible explanation of this finding is the participation of the naphthyl group in stabilizing the positive charge of the transition state (Fig. 3[B]). Further experiments to identify such preferential syn-epoxidation are in progress.

Experimental

General Experimental Procedures 1H-NMR spectra were recorded on a Bruker ARX-400 NMR spectrometer. Chemical shifts are reported in parts per million (ppm) relative to CHCl$_3$ (δ 7.25), and coupling constants are given in Hz. Mass spectra were recorded on JEOL JMS-SX102A and JEOL JMS-AM150 mass spectrometers.

1,7-Dimethanesulfonylheptadien-4-yl Methoxy-(2-naphthyl) acetate (1) 1.6-Heptadien-4-ol (694 mg, 5.4 mmol) was added to a solution of racemic methoxy-(2-naphthyl)acctic acid (2NMA) (1.3 g, 6.1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.5 g, 7.8 mmol), triethylamine (1.1 ml, 7.8 mmol), and 4-dimethylaminopyridine (1.5 g, 11.9 mmol) in dry dichloromethane (100 ml). After the reaction mixture was stirred for 20 h at room temperature under nitrogen, it was treated with water, and the product was extracted with ethyl acetate. The ethyl acetate layer was washed with 10% citric acid and brine, then dried (sodium sulfate). Filtration and removal of the ethyl acetate gave a residue which was purified by flash column chromatography (20% ethyl acetate in hexane). 1H-NMR (CDCl$_3$) δ: 7.89 (1H, s, ArH), 7.53 (3H, m, ArH), 7.47 (1H, dd, $J=8.5$, 1.7 Hz, ArH), 7.50 (2H, m, ArH), 5.70 (1H, ddt, $J=17.2$, 10.2, 7.1 Hz, anti-$\text{CH}=\text{CH}_2$), 5.44 (1H, ddt, $J=17.2$, 10.2, 7.1 Hz, syn-$\text{CH}=\text{CH}_2$), 5.03 (3H, m, anti-$\text{CH}=\text{CH}_2$ and CH-O-2NMA), 4.88 (1H, s, naph-CH), 4.76 (2H, m, syn-$\text{CH}=\text{CH}_2$), 3.44 (3H, s, O-C\equivH), 2.32 (2H, m, anti-$\text{CH}=\text{CH}_2$), 2.18 (2H, m, syn-$\text{CH}=\text{CH}_2$); El-MS m/z: 310.1590 (Calcd for C$_{20}$H$_{26}$O$_5$: 310.1569).

Dimethyl sulfide borane (392 µl, 3.92 mmol) was added to a solution of 1,6-Heptadien-4-ol (694 mg, 5.4 mmol) was added to a solution of 1,6-Heptadien-4-ol (694 mg, 5.4 mmol) in dry dichloromethane (1 ml). After the reaction was worked up after 20 h, syn-epoxide (9), anti-epoxide (10), and diepoxide were isolated in a 6 : 4 : 5 ratio.

Fig. 2 Time Courses of (a) Sodium Iodide and Dimesylate (1), (b) Tributyltin Hydride and Diodide (4), and (c) MCBP and Diallyl Compound (10)

Each experiment was done in duplicate, and mean values of the signal intensities were plotted against reaction time.

Fig. 3 (A) The SN_2 Reaction of Dimesylate (1) with Sodium Iodide, and the Tributyltin Hydride Reduction of Diodide (4)

The stable conformation of the 2NMA ester is drawn. Attack on the syn-CH_2-OMs is prevented by the naphthyl group (a). The attack from the remoter side of the 2NMA group is also detarded because the leaving OMs group is sterically hindered by the naphthyl group.

(B) A Cation-Stabilizing Model to Interpret the Predominant Epoxidation of syn-Vinyl Group of 10
Methanesulfonyl chloride (119 μl, 1.54 mmol) was added to a solution of
1, 7-dihydroxyheptan-4-yl (2-naphthyl) methoxyacetate (222 mg, 642 μmol)
in pyridine (2 ml). The mixture was stirred for 10 min at room temperature.
Water was added and the product was extracted with ethyl acetate. The ethyl
acetate phase was washed with copper sulfate solution and then dried
(sodium sulfate). Filtration and removal of the ethyl acetate in vacuo gave 1
(276 mg, 550 μmol, 86%): 1H-NMR (CDCl3): δ: 7.91 (1H, s, ArH), 7.84 (3H, m, ArH), 7.54 (1H, dd, J=8.8, 1.2 Hz, ArH), 7.48 (2H, m, ArH), 4.94 (1H, m, CH–O–2NMA), 4.89 (1H, s, O–Me–CH3), 3.44 (3H, s, O–CH3), 2.78 (2H, t, J=7.6 Hz, CH–2–OMs), 0.88 (3H, t, J=7.2 Hz, CH2–2–CH3), 1.20—1.65 (8 H, m, CH2–CH2–CH3–), 0.88 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.88 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.58—1.00 (8H, m, CH2–CH2–CH3–), 0.42 (2H, m, J=6.0 Hz, syn-CH2–CH2–CH3–), 1.12—1.50 (8 H, m, CH2–CH2–CH3–), 0.85 (3H, t, J=7.2 Hz, CH2–CH2–CH3–), 0.85 (3H, t, J=7.6 Hz, anti-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–), 0.63 (3H, t, J=7.2 Hz, syn-CH2–CH2–CH3–).