## Phenolic Constituents of Licorice. VIII.<sup>1)</sup> Structures of Glicophenone and Glicoisoflavanone, and Effects of Licorice Phenolics on Methicillin-Resistant *Staphylococcus aureus*

Tsutomu HATANO,<sup>*a*</sup> Yasushi SHINTANI,<sup>*a*</sup> Yasuhiro AGA,<sup>*a*</sup> Sumiko SHIOTA,<sup>*b*</sup> Tomofusa Tsuchiya,<sup>*b*</sup> and Takashi YoshiDa<sup>\*,*a*</sup>

Department of Pharmacognosy<sup>a</sup> and Department of Microbiology,<sup>b</sup> Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700–8530, Japan. Received, March 23, 2000; accepted May 30, 2000

Two new phenolic compounds, glicophenone (1) and glicoisoflavanone (2), were isolated from commercial licorice, and their structures were elucidated on the basis of spectroscopic data. Antibacterial assays of licorice phenolics for *Staphylococcus aureus*, including four strains of methicillin-resistant *S. aureus* (MRSA), and also for *Escherichia coli* K12 and *Pseudomonas aeruginosa* PAO1, were then examined. Two compounds among them, 8-( $\gamma$ , $\gamma$ -dimethylallyl)-wighteone (21) and 3'-( $\gamma$ , $\gamma$ -dimethylallyl)-kievitone (28), showed remarkable antibacterial effects [minimum inhibitory concentrations (MICs), 8  $\mu$ g/ml] on the MRSA strains and methicillin-sensitive *S. aureus*. Licochalcone A (14), gancaonin G (20), isoangustone A (24), glyasperins C (30) and D (31), glabridin, (32), licoricidin (33), glycycoumarin (34) and licocoumarone (40) showed antibacterial effects on the MRSA strains were also examined, and licoricidin (33) noticeably decreased the resistance of the MRSA strains against oxacillin, as shown by the reduction in the MICs of oxacillin (lower than 1/128—1/1000 in the presence of 8  $\mu$ g/ml of 33, and 1/8—1/32 in the presence of 4  $\mu$ g/ml of 33). Mechanistic study suggested that 33 does not inhibit the formation of penicillin-binding protein 2' (PBP2'), but affects the enzymatic function of PBP2'.

Key words licorice; glicophenone; glicoisoflavanone; licoricidin; methicillin-resistant Staphylococcus aureus; oxacillin

Much of the recent research on licorice constituents has indicated the pharmacological importance of phenolic compounds, together with saponins, in the medicinal use of licorice.<sup>2-6)</sup> We also reported inhibitory effects on oxidative enzymes, radical-scavenging effects and the antiviral effect of licorice phenolics.<sup>7)</sup>

Since the antibiotic-resistance of bacteria is one of the most serious problems in clinical medicine today, development of new drugs against the drug-resistant bacteria or suppression of the drug-resistance in bacteria is desired. Previously we reported that some low-molecular-weight phenolics (rhubarb anthraquinones and aglycones of naphthalene glycosides of cassia seeds) showed antibacterial effects on methicillin-resistant *Staphylococcus aureus* (MRSA).<sup>8)</sup> On the other hand, the effects of licorice phenolics on various microbes have been reported.<sup>9–13)</sup>

We therefore examined the effects of licorice phenolics on MRSA. In the course of this study, we isolated two new compounds named glicophenone (1) and glicoisoflavanone (2), along with known compounds, and found that various licorice phenolics have potent antibacterial effects on MRSA and methicillin-sensitive *S. aureus* (MSSA). Among the compounds which showed potent antibacterial effects on the MRSA strains, an isoflavan noticeably reduced the resistance of MRSA against a  $\beta$ -lactam antibiotic oxacillin. This paper deals with the structural elucidation of the new compounds, and the antibacterial effects of licorice phenolics, especially those on MRSA.

## **Results and Discussion**

**Structures of Glicophenone and Glicoisoflavanone** The licorice used in this study is a commercial variety, and its source plant was tentatively assigned to be *Glycyrrhiza uralensis* on the basis of similarity of the high-performance liquid chromatography (HPLC) profile to that reported for *G. uralensis*.<sup>14)</sup> An ethyl acetate extract from the licorice was subjected to centrifugal partition chromatography (CPC)<sup>15)</sup> and/or column chromatography, and the fractions were further purified by preparative TLC or preparative HPLC to give glicophenone (1), glicoisoflavanone (2), and 32 known compounds.

Glicophenone (1) was obtained as colorless needles. Highresolution electron-impact (EI) MS indicated its molecular formula,  $C_{20}H_{22}O_6$ . The UV spectrum is similar to that of licoriphenone (3).<sup>12</sup> The <sup>1</sup>H-NMR spectrum indicated the presence of tri-substituted [ $\delta$ : 6.31 (1H, d, J=2.5 Hz; H-3), 6.43 (1H, dd, J=2.5, 8.5 Hz; H-5), 8.01 (1H, d, J=8.5 Hz; H-6)] and penta-substituted [ $\delta$ : 6.29 (1H, s; H-5')] benzene rings. The spectrum also showed signals due to methylene  $[\delta: 4.21 (2H, s; H-8)]$  and methoxyl protons  $[\delta: 3.62 (3H,$ s)], along with those attributable to a  $\gamma$ , $\gamma$ -dimethylallyl group [ $\delta$ : 3.25 (2H, br d, J=7 Hz; H-1"), 5.18 (1H, br t, J=7 Hz; H-2"), 1.63, 1.73 (3H each, brs; gem-dimethyl at C-3")]. The pattern of these signals is very similar to that for licoriphenone (3), except for the number of methoxyl signals. The EI-MS showed fragment ion peaks at m/z 137 and 221, indicating the presence of a methoxyl group on the B-ring (Fig. 1). The <sup>13</sup>C chemical shifts of B-ring carbons [ $\delta$ : 107.9 (C-1'), 159.5 (C-2'), 114.0 (C-3'), 156.2 (C-4'), 99.7 (C-5'), 155.3 (C-6') of 1 were similar to those of the corresponding carbons of glicoricone  $(4)^{16}$  [ $\delta$ : 106.2 (C-1'), 159.1 (C-2'), 114.2 (C-3'), 157.7 (C-4'), 100.9 (C-5'), 156.6 (C-6')], suggesting the same substitution pattern of this benzene ring as that of 4. The nuclear Overhauser effect spectroscopy (NOESY) measurement of 1 showed cross peaks due to the nuclear Overhauser effects (NOEs) of the methoxyl group with H-8 (methylene), H-1" and H-2" ( $\gamma$ , $\gamma$ -dimethylallyl group), as indicated by the arrows in the formula. The location of the methoxyl group in 1 was thus determined to be at C-2'.

Glicoisoflavanone (2) was obtained as colorless needles. Its molecular formula C<sub>22</sub>H<sub>24</sub>O<sub>6</sub> was indicated by its highresolution EI-MS. The UV spectrum was characteristic of isoflavanone. The <sup>1</sup>H-NMR spectrum also showed signals of the isoflavanone skeleton as follows:  $\delta$ : 4.38 (1H, dd, J=6, 13 Hz; H-2), 4.90 (1H, dd, J=10.5, 13 Hz; H-2), 4.33 (1H, dd, J=6, 10.5 Hz; H-3) (C-ring); 7.76 (1H, d, J=2.5 Hz; H-5), 6.56 (1H, dd, *J*=2.5, 8.5 Hz; H-6), 6.40 (1H, d, *J*=8.5 Hz; H-8) (tri-substituted benzene ring); 6.33 (1H, s; H-5') (pentasubstituted benzene-ring). Signals due to a  $\gamma$ , $\gamma$ -dimethylallyl group [ $\delta$ : 3.25 (2H, m; H-1"), 5.18 (1H, brt, J=5 Hz; H-2"), 1.64, 1.73 (3H each, brs; gem-dimethyl at C-3")] and two methoxyl groups [ $\delta$ : 3.66, 3.74 (3H each, s)] were also shown. The fragment ions m/z 136 and 247 shown in the EI-MS suggested that the tri-substituted and penta-substituted benzene rings are respectively attributed to the A and B rings of the isoflavanone structure (Fig. 1), and the two methoxyl groups are on the B-ring. The <sup>13</sup>C chemical shifts of the Aring [δ: 115.9 (C-4a), 130.0 (C-5), 110.9 (C-6), 164.7 (C-7), 103.5 (C-8), 164.5 (C-8a)] and B-ring [ $\delta$ : 108.9 (C-1'), 159.7 (C-2'), 114.9 (C-3'), 159.2 (C-4'), 96.5 (C-5'), 155.7 (C-6')] carbons of 2 are closely similar to the corresponding carbons of the A-ring of 4'-methoxy-7-hydroxyisoflavanone  $(5)^{17}$  [ $\delta$ : 115.3 (C-4a), 130.2 (C-5), 111.4 (C-6), 165.1 (C-7), 103.4 (C-8), 164.4 (C-8a)] and the B-ring of licoriphenone (3) [δ: 108.6 (C-1'), 159.2 (C-2'), 114.9 (C-3'), 158.7 (C-4'), 96.1 (C-5'), 155.7 (C-6'), in acetone- $d_6$ ], respectively. The NOESY spectrum of 2 showed cross peaks of the methoxyl signal at  $\delta$  3.66 with H-2 (C-ring), H-1" and H-2"  $(\gamma, \gamma$ -dimethylallyl group) (indicated by the arrows in the formula). On the other hand, the methoxyl signal at  $\delta$  3.74 showed cross peaks with H-5' and protons of the  $\gamma,\gamma$ -dimethylallyl group in the NOESY spectrum. These NOEs substantiated the substitution pattern of the B-ring. The circular dichroism (CD) spectrum of 2 showed a positive Cotton effect at 328 nm, indicating<sup>18)</sup> the *R*-configuration at C-3. Structure 2 was thus assigned to glicoisoflavanone.

Antibacterial Effects of Licorice Phenolics on MRSA and MSSA Antibacterial effects on four strains of MRSA and a strain of MSSA, and also on *Escherichia coli* K12 and *Pseudomonas aeruginosa* PAO1, were evaluated for licorice phenolics of various types using the liquid dilution method.<sup>8)</sup> Minimum inhibitory concentrations (MICs) of the tested compounds are shown in Table 1.

Flavanones and Chalcones Among the tested compounds, flavanones 6—9 did not show antibacterial effects on MRSA and MSSA (MIC >128  $\mu$ g/ml). Most of the chalcones such as licochalcone B (15) and tetrahydroxymethoxychalcone (12) showed weak or negligible effects (MIC 64, 128 or >128  $\mu$ g/ml). However, licochalcone A (14) showed antibacterial effects on both MRSA and MSSA with MICs of 16  $\mu$ g/ml.

Isoflavones, Isoflavanones and Isoflavans An isoflavone,  $8-(\gamma,\gamma-\text{dimethylallyl})$ -wighteone (21), and an isoflavanone,  $3'-(\gamma,\gamma-\text{dimethylallyl})$ -kievitone (28), showed potent antibacterial effects on MRSA and MSSA (MIC 8  $\mu$ g/ml). Isoflavones, gancaonin G (20) and isoangustone A (24), and isoflavans, glyasperins C (30) and D (31), glabridin (32) and licoricidin (33), showed antibacterial effects on MRSA and



Fig. 1. Mass Fragmentation of 1 and 2 in Their EI-MS

MSSA with MICs of  $16 \,\mu$ g/ml, while isowighteone (22) (isoflavone) had MICs of 16 and  $32 \,\mu$ g/ml for MSSA and MRSA, respectively. The MICs of licoisoflavanone (27) (isoflavanone) for MRSA and MSSA were  $32 \,\mu$ g/ml. The other isoflavones, isoflavanones and isoflavans, including glicoisoflavanone (2), showed MICs of 32—128  $\mu$ g/ml for MRSA and MSSA, or negligible effects (MIC >128  $\mu$ g/ml).

**3-Arylcoumarins and Others** Among the 3-arylcoumarins and other phenolic compounds, glycycoumarin (34), licocoumarone (40) (MIC 16  $\mu$ g/ml), licoarylcoumarin (36), licoriphenone (3) (MIC 16—32  $\mu$ g/ml), and glicophenone (1) (MIC 32  $\mu$ g/ml) showed antibacterial effects on MSSA and MRSA.

**Structure–Activity Relationships** Antibacterial effects of flavanones isolated from leguminous plants on MRSA have been reported,<sup>19)</sup> and potent anti-MRSA activity was correlated with the presence of an aliphatic or lavandulyl group, in addition to the substitution pattern of the phenolic hydroxyl groups. Compounds **21** and **28**, which showed MIC values of 8  $\mu$ g/ml for MSSA and MRSA, have two  $\gamma$ , $\gamma$ -dimethylallyl groups, and all of the compounds with the MICs of 16  $\mu$ g/ml have at least one  $\gamma$ , $\gamma$ -dimethylallyl or equivalent ( $\alpha$ , $\alpha$ -dimethylallyl or dimethylpyrane) group. On the other

| Table 1. | MICs of Licorice Phenolics for MRSA, | MSSA, Escherichia coli and | Pseudomonas ae | eruginosa (µg/ml | ) |
|----------|--------------------------------------|----------------------------|----------------|------------------|---|
|          |                                      |                            |                |                  |   |

| Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MRSA<br>OM481 | MRSA<br>OM505 | MRSA<br>OM584 | MRSA<br>OM623 | MSSA<br>209P | E. coli<br>K12 | P. aeruginosa<br>PAO1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|--------------|----------------|-----------------------|
| Flavanones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |               |               |               |              |                |                       |
| Liquiritigenin (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| Liquiritin (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| 6"-O-Acetylliquiritin (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| Naringenin (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| Chalcones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |               |               |              |                |                       |
| Isoliquiritin apioside (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| Isoliquiritin (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| Tetrahydroxymethoxychalcone (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| Echinatin (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128           | 64            | 64            | 64            | 64           | >128           | >128                  |
| Licochalcone A (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16            | 16            | 16            | 16            | 16           | >128           | >128                  |
| Licochalcone B (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128           | 128           | 128           | 128           | 128          | >128           | >128                  |
| Isoliguiritigenin (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 128           | 128           | 128           | 128           | 128          | >128           | >128                  |
| Isoflavones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |               |               |               |              |                |                       |
| Glycyrrhisoflayone (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64            | 64            | 32            | 32            | 32           | >128           | >128                  |
| Semilicoisoflavone B (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64            | 64            | 64            | 32            | 32           | >128           | >128                  |
| Genistein ( <b>19</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| Glicoricone (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64            | 64            | 64            | 64            | 64           | >128           | >128                  |
| Gancaonin G (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16            | 16            | 16            | 16            | 16           | >128           | >120                  |
| $8-(\gamma \gamma - Dimethylallyl)$ -wighteone (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8             | 8             | 8             | 8             | 8            | >128           | >120                  |
| Isowighteone (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32            | 32            | 32            | 32            | 16           | >120           | >120                  |
| Glisoflavone (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52<br>64      | 64            | 52<br>64      | 64            | 64           | >128           | >128                  |
| $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16            | 16            | 16            | 16            | 16           | >120           | >120                  |
| Isoffevenenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10            | 10            | 10            | 10            | 10           | >120           | ~128                  |
| Gluourrhisoflevenone (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64            | 64            | 22            | 22            | 22           | >128           | >128                  |
| Glyasmorin E (26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64            | 64            | 52            | 52            | 32           | >128           | >128                  |
| Lipping flower on p (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22            | 22            | 22            | 22            | 32           | >128           | >128                  |
| $C_{1}^{1} = c_{1}^{2} = c_{1}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52            | 52            | 32            | 32            | 32           | >120           | > 120                 |
| $2'_{1}$ ( <i>a</i> , <i>a</i> , <i>D</i> ) prosthylallyl) lybrid (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04            | 04            | 52            | 32            | 32           | >128           | >128                  |
| 5 -( $\gamma$ , $\gamma$ -Dimetriyianyi)-kievitone (28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0             | 0             | 0             | 0             | 0            | /128           | /120                  |
| $\frac{1}{2} \frac{1}{2} \frac{1}$ | 100           | 120           | 100           | 120           | 120          | > 100          | > 100                 |
| (3R)-vestitol (29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128           | 128           | 128           | 128           | 128          | >128           | >128                  |
| Glyasperin C (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16            | 16            | 16            | 16            | 16           | >128           | >128                  |
| Glyasperin D (31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16            | 16            | 16            | 16            | 16           | >128           | >128                  |
| Glabridin (32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16            | 16            | 16            | 16            | 16           | >128           | >128                  |
| Licoricidin (33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16            | 16            | 16            | 16            | 16           | >128           | >128                  |
| 3-Arylcoumarins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |               |              |                |                       |
| Glycycoumarin (34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16            | 16            | 16            | 16            | 16           | >128           | >128                  |
| Licopyranocoumarin (35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >128          | >128          | 128           | 128           | >128         | >128           | >128                  |
| Licoarylcoumarin (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32            | 32            | 32            | 32            | 16           | >128           | >128                  |
| Glycyrin (37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128           | 128           | 128           | 128           | 128          | >128           | >128                  |
| Isolicopyranocoumarin (38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| Glycyrin permethyl ether (39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |               |               |               |              |                |                       |
| Licocoumarone (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16            | 16            | 16            | 16            | 16           | >128           | >128                  |
| Glicophenone (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32            | 32            | 32            | 32            | 32           | >128           | >128                  |
| Licoriphenone (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32            | 32            | 32            | 16            | 16           | >128           | >128                  |
| Glycyrol (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |
| Isoglycyrol (42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >128          | >128          | >128          | >128          | >128         | >128           | >128                  |

hand, the glycosides tested exhibited negligible effects on MRSA and MSSA. These results implied participation of their lipophilicity in the antibacterial effects of the phenolic compounds on *S. aureus* strains.

The order of strength of the antibacterial activity, glycycoumarin (34)>glycyrin (37)>glycyrin permethyl ether (39), suggested requirements of phenolic hydroxyl groups in the molecule for the antibacterial effects. A difference in the antibacterial activity between glycycoumarin (34) (MIC 16  $\mu$ g/ml) and glycyrol (41) (MIC >128  $\mu$ g/ml) is also attributable to the difference in the number of phenolic hydroxyl groups. However, in this case, rigidity in the bond between the coumarin structure and B-ring of glycyrol may be related to the decrease of the activity.

Antibacterial properties of various types of licorice pheno-

lics described above may suggest some usefulness of licorice in the treatment of diseases responsible for *S. aureus*, at least in the intestines.

Effects of Licorice Phenolics on *E. coli* and *P. aeruginosa* None of the tested compounds showed antibacterial effects on *E. coli* K12 and *P. aeruginosa* PAO1 (MIC >128  $\mu$ g/ml).

Effects of Licorice Phenolics on the Resistance of MRSA against Oxacillin Recently, the suppression of bacterial resistance against  $\beta$ -lactam antibiotics by several phenolic compounds,<sup>20–22)</sup> including tea catechins and hydrolyzable tannins, have been shown. We therefore examined the effects of licorice phenolics on the MICs of oxacillin for MRSA.

Oxacillin in the absence of the phenolic compounds





H<sub>3</sub>C.

OH

Chart 2

showed MICs of 64—512  $\mu$ g/ml for the four MRSA strains, while the MIC for MSSA 209P was  $<0.5 \,\mu$ g/ml. However, in the presence of  $16 \,\mu \text{g/ml}$  of glicophenone (1), one of the newly isolated compounds, the MICs of oxacillin for the MRSA strains decreased to 1/2—1/8 of the values in the absence of glicophenone (1). Isowighteone (22) ( $16 \mu g/ml$ ) reduced the MICs of oxacillin to 1/4-1/8, and isoangustone A (24) reduced them to 1/2-1/4. Other tested licorice phenolics, except for glycycoumarin (34), had an analogous effect on at least two MRSA strains (Table 2).

However, the effects of licoricidin (33) were much stronger. In the presence of  $8 \mu g/ml$  of licoricidin, the MICs of oxacillin decreased to lower than 1/128-1/1000 of the values in the absence of the compound. Even the presence of  $4 \mu g/ml$  of licoricidin decreased the MICs of oxacillin to 8—  $16 \,\mu \text{g/ml}.$ 

The effect of licoricidin (33) on the growth curve of one of the MRSA strains, OM481, was then examined. As shown in Fig. 2, the amount of the bacterium after 24 h incubation in the presence of both of oxacillin  $(10 \,\mu g/ml)$  and licoricidin  $(8 \,\mu g/ml)$  was about 1/100 of that in the absence of them (control), while oxacillin alone  $(10 \,\mu g/ml)$  or licoricidin alone (8  $\mu$ g/ml) did not cause such an inhibition of the bacterial growth.

In order to clarify the mechanism of the reduction of MICs of oxacillin, the effect of licoricidin (33) on the formation of penicillin-binding protein 2' (PBP2') was examined, since the formation of the enzymatic protein PBP2', which catalyzes cell wall construction, causes the resistance of MRSA against the  $\beta$ -lactams.

The MRSA strain OM481 was incubated in the presence of licoricidin at a concentration of  $8 \mu g/ml$ , where licoricidin showed the reduction of the MICs of oxacillin. After the incubation of MRSA, the bacterium was subjected to the slide latex agglutination assay to examine whether PBP2' was formed.

As a result, the agglutination due to the formation of



the Presence of Oxacillin (1  $\mu$ g/ml) (—•—), Licoricidin (8  $\mu$ g/ml) (—□—) 

PBP2' was observed analogously to that in the absence of licoricidin or in the presence of oxacillin  $(1 \mu g/ml)$  (Fig. 3). Therefore, this compound restored the antibacterial effect of oxacillin without affecting the PBP2' formation. Although the mechanism for the restoring effect is still unclear, licoricidin may affect the enzymatic function of PBP2'. Assuming that the other PBPs are still available for the bacteria in the presence of licoricidin, oxacillin might work well leading the marked decrease of its MIC. However, other possible mechanisms such as an increase in the affinity of oxacillin to PBP2' by licoricidin may not be excluded.

## Experimental

<sup>1</sup>H- and <sup>13</sup>C-NMR spectra were measured on a Varian VXR-500 instrument (500 MHz for  ${}^{1}\text{H}$  and 125.7 MHz for  ${}^{13}\text{C}$ ) in acetone- $d_{6}$ . Chemical shifts are given in  $\delta$  values (ppm) based on the chemical shifts of solvent signals ( $\delta_{\rm H}$  2.04,  $\delta_{\rm C}$  29.8).

Isolation of Phenolic Compounds from Licorice Licorice (2 kg) (purchased from Tochimoto-tenkai-do, Osaka) was pulverized and extracted with *n*-hexane (61 $\times$ 3) and ethyl acetate (61 $\times$ 3), successively. The ethyl acetate extract (87g) was subjected to counter-current distribution (CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O, 7:13:8, n=3, r=3) to separate six fractions, S1-S6. A portion (20g) of fraction S6 (the fraction containing compounds of the lowest polarity among the six fractions) (75.9 g) was subjected to CPC (CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O, 7:13:8, reversed-phase development). Fractions

| Table 2. | Effects of Licor | ice Phenolics on th | e MICs of Oxacillin | for MRSA Strain | ns (µg/ml) |
|----------|------------------|---------------------|---------------------|-----------------|------------|
|----------|------------------|---------------------|---------------------|-----------------|------------|

| Compounds                                                                       | MRSA<br>OM481 | MRSA<br>OM505 | MRSA<br>OM584 | MRSA<br>OM623 | MSSA<br>209P |
|---------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|--------------|
| Oxacillin alone                                                                 | 512           | 64            | 256           | 512           | < 0.5        |
| Oxacillin plus                                                                  |               |               |               |               |              |
| Chalcones                                                                       |               |               |               |               |              |
| Licochalcone A (14) (8 $\mu$ g/ml)                                              | 128           | 128           | 64            | 128           | < 0.5        |
| Licochalcone B (15) (64 $\mu$ g/ml)                                             | 128           | 64            | 16            | 64            | < 0.5        |
| Isoflavones                                                                     |               |               |               |               |              |
| Glicoricone (4) $(32 \mu g/ml)$                                                 | 512           | 64            | 64            | 128           | < 0.5        |
| Isowighteone (22) (16 $\mu$ g/ml)                                               | 64            | 16            | 64            | 64            | < 0.5        |
| Glisoflavone (23) $(32 \mu g/ml)$                                               | 128           | 64            | 32            | 128           | < 0.5        |
| Isoangustone A (24) (8 $\mu$ g/ml)                                              | 256           | 32            | 128           | 128           | < 0.5        |
| Isoflavanones                                                                   |               |               |               |               |              |
| 3'-( $\gamma$ , $\gamma$ -Dimethylallyl)-kievitone ( <b>28</b> ) (4 $\mu$ g/ml) | 256           | 64            | 64            | 256           | < 0.5        |
| Isoflavans                                                                      |               |               |               |               |              |
| Glabridin (32) $(8 \mu \text{g/ml})$                                            | 256           | 128           | 128           | 128           | < 0.5        |
| Licoricidin (33) $(8 \mu g/ml)$                                                 | < 0.5         | < 0.5         | < 0.5         | < 0.5         | < 0.5        |
| Licoricidin (33) $(4 \mu g/ml)$                                                 | 16            | 8             | 16            | 16            | < 0.5        |
| 3-Arylcoumarins                                                                 |               |               |               |               |              |
| Glycycoumarin (34) (8 $\mu$ g/ml)                                               | 1024          | 64            | 256           | 256           | < 0.5        |
| Others                                                                          |               |               |               |               |              |
| Glicophenone (1) $(16 \mu g/ml)$                                                | 256           | 32            | 64            | 64            | < 0.5        |



C)



Fig. 3. Formation of PBP2' in MRSA OM481 in the Absence and in the Presence of Oxacillin or Licoricidin

a) MSSA 209P, b) MRSA OM481 in the absence of oxacillin and licoricidin, c) MRSA OM481 in the presence of oxacillin (1 µg/ml), d) MRSA OM481 in the presence of licoricidin (8 µg/ml). Detection of PBP2' was effected with anti-PBP2' monoclonal antibody-sensitized latex (MRSA Screen, Denka Seiken). The MSSA 209P did not show the formation of PBP2', while the other three showed the formation of PBP2'.

from CPC were chromatographed on Fuji gel ODS G3 and MCI gel CHP-20P, and further purified by preparative TLC on silica gel and preparative HPLC [YMC-A324 (5  $\mu$ m, 10 mm i.d.×300 mm), CH<sub>3</sub>CN-H<sub>2</sub>O-AcOH (60:35:5)] to give glycycoumarin (34),<sup>23</sup> glisoflavone (23),<sup>24</sup> glycyrol (41),<sup>25</sup> licoisoflavanone (27),<sup>26</sup> isowighteone (22),<sup>27</sup> glycyrin (37),<sup>28</sup> isoangustone A (24),<sup>12</sup> glyasperin D (31),<sup>29</sup> glicophenone (1), licoricidin (33)<sup>30</sup> and 3'-( $\gamma$ , $\gamma$ -dimethylallyl)-kievitone (28).<sup>31</sup> A part of fraction S6 was chromatographed on YMC-gel SIL-120-S50 and Fuji gel ODS G3, then purified by preparative TLC to give glyasperin F (26).<sup>32</sup> Yields of the phenolics from the ethyl acetate extract were: 34 (0.26%), 23 (0.059%), 41 (0.19%), 27 (0.023%), 22 (0.009%), 37 (0.012%), 24 (0.18%), 31 (0.029%), 1 (0.004%), 33 (0.15%), 28 (0.072%) and 26 (0.026%).

Analogous treatments of commercial licorice in separate experiments gave isoglycyrol (**42**)<sup>25</sup> (0.008% from an ethyl acetate extract), licoriphenone (**3**)<sup>12</sup> (0.016%), glycyrrhisoflavanone (**25**)<sup>23</sup> (0.015%), glycyrrhisoflavone (**17**)<sup>23</sup> (0.052%), glicoisoflavanone (**2**) (0.007%), liquiritigenin (**6**)<sup>33</sup> (0.006%), glyasperin C (**30**)<sup>29</sup> (0.014%), licopyranocoumarin (**35**)<sup>24</sup> (0.032%), glicoricone (**4**)<sup>16</sup> (0.001%), semilicoisoflavone B (**18**)<sup>11</sup> (0.29%), liquiritin (**7**)<sup>34</sup> (0.21%), isoliquiritin apioside (**10**)<sup>35</sup> (0.016%), isoliquiritin (**11**)<sup>35</sup> (0.019%), 6"-*O*-acetylliquiritin (**8**)<sup>36</sup> (0.022%), tetrahydroxymethoxychalcone (**12**)<sup>11</sup> (0.007%), naringenin (**9**)<sup>11</sup> (0.023%), genistein (**19**)<sup>16</sup> (0.016%), echinatin (**13**)<sup>16</sup> (0.021%), licocoumarone (**40**) (0.022%),<sup>24</sup> (3*R*)-vestitol (**29**)<sup>11</sup> (0.024%), gancaonin G (**20**)<sup>37</sup> (0.042%), 8-( $\gamma$ , $\gamma$ -dimethylallyl)-wighteone (**21**)<sup>38</sup> (0.008%), in addition to the compounds described above.

Glicophenone (1): Colorless needles, mp 145 °C. EI-MS m/z: 358 (M<sup>+</sup>, 38%), 221 (74%), 165 (24%), 137 (100%). High-resolution EI-MS m/z: 358.1460 (M<sup>+</sup>; Calcd for C<sub>20</sub>H<sub>22</sub>O<sub>6</sub>, m/z 358.1416). UV  $\lambda_{max}^{MeOH}$ nm (log  $\varepsilon$ ): 209 (4.64), 230 (sh, 4.21), 276 (4.13), 313 (3.63). <sup>1</sup>H-NMR: see text. <sup>13</sup>C-NMR  $\delta$ : 17.9 (CH<sub>3</sub> at C-3"), 23.5 (C-1"), 25.8 (CH<sub>3</sub> at C-3"), 34.4 (C-8), 61.6 (OCH<sub>3</sub>), 99.7 (C-5'), 103.5 (C-3), 107.9 (C-1'), 108.6 (C-5), 112.4 (C-1), 114.0 (C-3'), 125.4 (C-2"), 130.3 (C-3"), 133.6 (C-6), 155.3 (C-6'), 156.2 (C-4'), 159.5 (C-2'), 165.3 (C-2), 166.1 (C-4), 204.3 (C-7).

Glicoisoflavanone (2): Colorless needles, mp 102 °C.  $[\alpha]_D - 3^\circ$  (*c*=2, MeOH). CD (MeOH) [ $\theta$ ] (nm): +9200 (215), +5800 (227), -6500 (300), +3500 (328). EI-MS *m/z*: 384 (M<sup>+</sup>, 40%), 366 ([M-H<sub>2</sub>O]<sup>+</sup>, 100%), 247 (5%), 136 (7%), 115 (21%). High-resolution EI-MS *m/z* 384.1630 (M<sup>+</sup>; Calcd for C<sub>22</sub>H<sub>24</sub>O<sub>6</sub>, 384.1573). <sup>1</sup>H-NMR: see text. <sup>13</sup>C-NMR  $\delta$ : 17.9 (CH<sub>3</sub> at C-3"), 23.6 (C-1"), 25.8 (CH3 at C-3"), 45.3 (C-3), 55.8 (2OCH<sub>3</sub> at C-4'), 62.3 (-OCH<sub>3</sub> at C-6'), 70.6 (C-2), 96.5 (C-5'), 103.5 (C-8), 108.9 (C-1'), 110.9 (C-6), 114.9 (C-3'), 115.9 (C-4a), 125.1 (C-2"), 130.0 (C-5), 130.6 (C-3"), 155.7 (C-6'), 159.2 (C-4'), 159.7 (C-2'), 164.5 (C-8a), 164.7 (C-7), 191.2 (C-4).

Estimation of Antibacterial Effects of Licorice Phenolics on MRSA Strains Four MRSA strains used in this study are clinical isolates from Okayama University hospital.<sup>21)</sup> Phenolic compounds of which the isolation procedure is not described here, licochalcones A  $(14)^{23}$  and B  $(15)^{23}$ isoliquiritigenin  $(16)^{,1}$  glabridin  $(32)^{,11}$  licoarylcoumarin  $(36)^{24}$  and isolicopyranocoumarin  $(38)^{,1}$  were obtained as described in previous reports. Glycyrin permethyl ether  $(39)^{28}$  was prepared from glycycoumarin (34). The MICs of tested compounds for the bacterial strains were determined using  $10^4$  colony forming unit (CFU)/well of bacterial solution on 96-well plates in a way reported previously.<sup>8)</sup>

Effects of Licorice Phenolics on the MICs of Oxacillin for MRSA Strains In the presence of each phenolic compound at concentrations lower than its MIC value, the lowest concentration of oxacillin which did not cause turbidity due to bacterial proliferation was estimated in a way analogous to that described above.

Effects of the Addition of Licoricidin on the Inhibitory Activity of Oxacillin against the Growth of MRSA OM481 The MRSA OM481 strain, which was maintained in the laboratory of the Department of Microbiology, was precultured overnight in a Mueller–Hinton (MH) medium containing Ca<sup>2+</sup> (50 mg/l) and Mg<sup>2+</sup> (25 mg/l) ions. A bacterial solution (0.2 ml) of absorbance 0.6—0.7 at 650 nm, prepared upon incubation of the precultured bacteria, was diluted with the MH medium (1.8 ml), and 50 µl portions of the solution were then added to the MH medium (5 ml each) in test tubes. The bacterial solution (*ca.* 10<sup>6</sup> CFU/ml) in the tubes was incubated with and without licoricidin (33) and/or oxacillin at 32 °C for 24 h. The bacteria in each tube was incubated on Nutrient agar plates at 32 °C for 24 h to estimate the amounts of the bacteria.<sup>21</sup>

Detection of PBP2' in MRSA OM481 in the Presence of Oxacillin or Licoricidin A portion (0.2 ml) of the precultured solution of MRSA OM481 was added to the MH medium (4.8 ml) containing  $Ca^{2+}$  (50 mg/l) and  $Mg^{2+}$  (25 mg/l) ions, and the solution was incubated until the ab-

sorbance at 650 nm attained 0.6—0.7 in the presence of oxacillin (1 µg/ml) or licoricidin (8 µg/ml). The bacterial solution was then centrifuged at 10000 rpm for 5 min, and the precipitated bacteria was washed with 0.05 M phosphate buffer (pH 7.0) twice. A part of the bacterial mass was extracted with 1 M NaOH (0.2 ml) in a boiling-water bath for 3 min, then left to stand at room temperature. A solution of 0.5 M KH<sub>2</sub>PO<sub>4</sub> (0.05 ml) was added, and the mixture was centrifuged at 4500 rpm for 5 min. The supernatant was diluted with 9-fold water, and 50 µl of the resulting solution was treated with anti-PBP2' monoclonal antibody-sensitized latex (MRSA Screen, Denka Seiken Co.) (15 µl) on a test card for 3 min to show the presence/absence of PBP2' by agglutination on the card.<sup>22</sup>)

## **References and Notes**

- For Part VII, see Hatano T., Takagi M., Ito H., Yoshida T., Chem. Pharm. Bull., 45, 1485—1492 (1997).
- Nomura T., Fukai Y., Fortschr. Chem. org. Naturst., 73, 1—140 (1998).
- Shibata S., Inoue H., Iwata S., Ma R.-D., Yu L.-J., Ueyama H., Takamatsu J., Hasegawa T., Tokuda H., Nishino A., Nishino H., Iwashima A., *Planta Med.*, 57, 221–224 (1991).
- Aida K., Tawata M., Shindo H., Onaya T., Sasaki H., Yamaguchi T., Chin M., Mitsuhashi H., *Planta Med.*, 56, 254–258 (1990).
- Kitagawa H., Chen W.-Z., Hori K., Harada E., Yasuda N., Yoshikawa M., Ren J., *Chem. Pharm. Bull.*, 42, 1056–1062 (1994).
- Kimura Y., Okuda H., Okuda T., Arichi S., *Phytotherapy Res.*, 2, 140–145 (1988).
- 7) Hatano T., Yoshida T. "Towards Natural Medicine Research in the 21st Century," ed. by Ageta H., Aimi N., Ebizuka Y., Fujita T., Honda G., Elsevier, Amsterdam, 1998, pp. 261—272. This paper is regarded as Part VI in the series "Phenolic Constituents of Licorice."
- Hatano T., Uebayashi H., Ito H., Shiota S., Tsuchiya T., Yoshida T., *Chem. Pharm. Bull.*, 47, 1121—1127 (1999).<sup>39)</sup>
- Mitscher L. A., Park T. H., Clark D., Beal J. L., J. Nat. Prod., 43, 259–269 (1980).
- Hattori M., Miyachi K., Shu Y.-Z., Kakiuchi N., Namba T., *Shoyaku-gaku Zasshi*, 40, 406–412 (1986).
- Okada K., Tamura Y., Yamamoto M., Inoue Y., Takagaki R., Takahashi K., Demizu S., Kajiyama K., Hiraga Y., Kinoshita T., *Chem. Pharm. Bull.*, 37, 2528—2530 (1989); Haraguchi H., Tanimoto K., Tamura Y., Mizutani K., Kinoshita T., *Phytochemistry*, 48, 125—129 (1998).
- 12) Kiuchi F., Chen X., Tsuda Y., Heterocycles, 31, 629-636 (1990).
- Chen M., Christensen S. B., Blom J., Lemmich E., Nadelmann L., Fich K., Theander T. G., Kharazmi A., *Antimicrob. Agents Chemother.*, 37, 2550–2556 (1993).
- Hatano T., Fukuda T., Liu Y.-Z., Noro T., Okuda T., Yakugaku Zasshi, 111, 311–321 (1991).
- 15) Yoshida T., Hatano T., Analusis, 25, M20-M22 (1997).
- 16) Hatano T., Fukuda T., Miyase T., Noro T., Okuda T., *Chem. Pharm. Bull.*, **39**, 1238—1243 (1991).
- 17) Pelter A., Ward R. S., Bass R. J., J. Chem. Soc. Perkin Trans. 1, 1978, 666—668.
- Kurosawa K., Ollis W. D., Redma B. T., Sutherland I. O., Alves H. M., Gottlieb O. R., *Phytochemistry*, 17, 1423–1426 (1978).
- Iinuma M., Tsuchiya H., Sato M., Yokoyama J., Ohyama M., Ohkawa Y., Tanaka T., Fujiwara S., Fujii T., *J. Pharm. Pharmacol.*, 46, 892–895 (1994); Tsuchiya H., Sato M., Miyazaki T., Fujiwara S., Tanigaki S., Ohyama M., Tanaka T., Iinuma M., *J. Ethnophamacology*, 50, 27–34 (1996).
- 20) Sakagami Y., Mimura M., Kajimura K., Yokoyama H., Iinuma M., Tanaka T., Ohyama M., Lett. Appl. Microbiol., 27, 98—100 (1998); Takahashi O., Cai Z., Toda M., Hara Y., Shimamura T., Kansenshogaku Zasshi, 69, 1126—1134 (1995); Liu I. X., Durham D. G., Richards R. M. E., J. Pharm. Pharmacol., 52, 361—366 (2000).
- 21) Shiota S., Shimizu M., Mizushima T., Ito H., Hatano T., Yoshida T., Tsuchiya T., *Biol. Pharm. Bull.*, **22**, 1388–1390 (1999); Shiota S., Shimizu, M., Mizushima T., Ito H., Hatano T., Yoshida T., Tsuchiya T., *FEMS Microbiology Letters*, **185**, 135–138 (2000).
- 22) Shimizu M., Shiota S., Yasuda K., Uebayashi H., Hatano T., Ito H., Tsuchiya T., Yoshida T., Abstracts, 119th Annual Meeting of the Pharmaceutical Society of Japan, Tokushima, March 1999, p. 110 of Part 2; Shimizu M., Shiota S., Ito H., Hatano T., Yoshida T., Tsuchiya T., Symposium Papers, 14th Symposium on Microbial Sciences, Niigata, September 1999, pp. 35—36.
- 23) Hatano T., Kagawa H., Yasuhara T., Okuda T., Chem. Pharm. Bull., 36,

2090-2097 (1988).

- 24) Hatano T., Yasuhara T., Fukuda T., Noro T., Okuda T., Chem. Pharm. Bull., 37, 3005–3009 (1989).
- 25) Shiozawa T., Urata S., Kinoshita T., Saitoh T., Chem. Pharm. Bull., 37, 2239—2240 (1989).
- 26) Saitoh T., Noguchi H., Shibata S., Chem. Pharm. Bull., 26, 144—147 (1978).
- 27) Ingham J.L., Tahara S., Shibaki S., Mizutani J., Z. Naturforsch., 44c, 905—913 (1989).
- 28) Kinoshita T., Saitoh T., Shibata S., Chem. Pharm. Bull., 26, 135—140 (1978).
- 29) Zeng L., Fukai T., Nomura T., Zhang R.-Y., Lou Z.-C., *Heterocycles*, 34, 575–587 (1992).
- Fukai T., Toyono M., Nomura T., *Heterocycles*, 27, 2309–2313 (1988).
- O'Neill M. J., Adesanya S. A., Roberts M. F., Pantry I. R., *Phytochem-istry*, 25, 1315–1322 (1986).
- 32) Zeng L., Fukai T., Nomura T., Zhang R.-Y., Lou Z.-C., Heterocycles,

**34**, 1813—1828 (1992).

- 33) Shinoda J., Ueeda S., Yakugaku Zasshi, 54, 704-714 (1934).
- 34) Nakanishi T., Inada A., Kanbayashi K., Yoneda K., *Phytochemistry*, 24, 339—341 (1985).
- 35) Hatano T., Takagi M., Ito H., Yoshida T., Phytochemistry, 47, 287– 293 (1998).
- 36) Shen F.-J., Hu J.-F., Yu Y.-C., Xu Z.-D., Gaodeng Xuexiao Huaxue Xuebao, 16, 572—574 (1995).
- 37) Fukai T., Wang Q.-H., Kitagawa T., Kusano K., Nomura T., Iitaka Y., *Heterocycles*, 29, 1761—1772 (1989).
- 38) Singhal A. K., Sharma R. P., Thyagarajan G., Herz W., Govindan S. V., *Phytochemistry*, 19, 929–934 (1980).
- 39) Demethylflavasperone gentiobioside, which was reported as a new compound in this paper, was later found to be identical with a compound that was reported as a rubrofusarin gentiobioside isomer: Hee J. L., Jee H. J., Sam S. K., Jae S. C., Arch. Pharm. Res., 20, 513–515 (1997).