Structure-Activity Relationship (SAR) Studies on Oxazolidinone Antibacterial Agents. 3. ${ }^{1)}$ Synthesis and Evaluation of 5-Thiocarbamate Oxazolidinones

Ryukou Tokuyama,* Yoshiei Takahashi, Yayoi Tomita, Masatoshi Tsubouchi, Nobuhiko Iwasaki, Noriyuki Kado, Eiichi Okezaki, and Osamu Nagata
Research and Development Division, Hokuriku Seiyaku Co., Ltd., 37-1-1, Inokuchi, Katsuyama, Fukui 911-8555, Japan. Received July 26, 2000; accepted December 22, 2000

Abstract

A series of 5-thiocarbamate oxazolidinones was prepared and tested for in vitro and in vivo antibacterial activities. The results of in vitro antibacterial activity indicated that the 5-thiocarbamate group was a suitable substituent for the activity by the 5 -moderate hydrophilicity. The compounds within a favorable $\log P$ value range were found to have potent in vitro antibacterial activity against gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Compounds 3a and 4h were superior to linezolid in both in vitro and in vivo potency and were considered to be hopeful compounds. We also discuss the pharmacokinetic properties of several compounds in mice.

Key words oxazolidinone; antibacterial activity; structure-activity relationship; 5-thiocarbamate oxazolidinone

Several antibiotics have been prescribed and found to be very effective on various infectious disorders. However, the appearance of multi-drug-resistant gram-positive bacteria, in particular, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) is causing a serious menace. Moreover, the emergence of van-comycin-resistant MRSA can be anticipated in the foreseeable future. For the treatment of these intractable infections, a new anti-infectious agent is needed in clinical.

Oxazolidinone antibacterial agents ${ }^{2)}$ are a new class of synthetic antibacterial agents with activity against gram-positive bacteria. Their mode of action has been found to inhibit the protein synthesis in the initial stage. ${ }^{3)}$ Because of this unique mode of action, oxazolidinone is not cross-resistant with other types of antibiotics. Linezolid (1), ${ }^{4}$) which was discovered by Pharmacia group, is well known as the first promising candidate of oxazolidinone and works effectively against numerous serious gram-positive human pathogens caused by MRSA and VRE.

In our preceding paper, ${ }^{1)}$ we described that 5-thiourea compounds 2a and 2b exhibited better in vitro antibacterial activities than linezolid. We also indicated that both the calculated $\log P$ value and the balance between 5-hydrophobic (or hydrophilic) substituent and hydrophilic (or hydrophobic) substituents on benzene ring would be important factors in

the development of 5-thiocarbonyl oxazolidinone antibacterial agents. However, the in vivo activities of $\mathbf{2 a}$ and $\mathbf{2 b}$ were not sufficient. Thus, we converted the 5-thiourea group into 5-thiocarbamate oxazolidinones in order to find candidates with good in vitro and in vivo activities.

In this paper, we describe our SAR study on a series of 5thiocarbamate oxazolidinones.

Chemistry 5-Thiocarbamate oxazolidinones were prepared as shown in Charts 2 and 3. Compounds 3a-e were synthesized from compound $\mathbf{5}^{1 a)}$ by treatment with the corresponding alcohols as shown in Chart 2.
(4'-Substituted)phenyl-5-thiocarbamate oxazolidinones 4 were prepared as shown in Chart 3 from key intermediates 7, which were easily derived from 6 by the usual method. ${ }^{16)}$ The intermediates 7 were treated with carbon disulfide followed by ethyl chloroformate to give isothiocyanates 8 . The thiocarbamate derivatives 4 were prepared from 8 by treatment with methanol. The physicochemical data of compounds 3 and 4 are shown in the experimental section.

Results and Discussion

All of the oxazolidinone derivatives were tested for antibacterial activity against both standard (Staphylococcus aureus Smith) and clinically isolated strains [S. aureus HPC1360 (MRSA), S. aureus HPC428 (MRSA), Enterococcus faecium HPC1322 and E. casseliflavus HPC1310 (VRE)]. Their minimum inhibitory concentrations (MICs $\mu \mathrm{g} / \mathrm{ml}$) are shown in Tables 1 and 2. The data of linezolid (1) and vancomycin were used as reference compounds.

We investigated the influence of side chain at 5-position on

a) $\mathrm{NaH} /$ Alcohols

Chart 2

Chart 3

Table 1. In Vitro Antibacterial Activities of 5-Substituted Oxazolidinones

		$\operatorname{MICs}(\mu \mathrm{g} / \mathrm{ml})^{a)}$				
		Standard strain	Clinical isolates			
No.	R ${ }^{1}$	S. aureus Smith	$\begin{gathered} \text { S. aureus } \\ {\text { HPC } 1360^{b)}}^{\text {a }} \end{gathered}$	S. aureus HPC428 ${ }^{\text {b) }}$	E. faecium HPC1322	E. casseliflavus HPC1310 ${ }^{c}$
3a	Me	1.56	1.56	0.78	0.78	1.56
3b	Et	3.13	3.13	3.13	1.56	6.25
3c	$n-\operatorname{Pr}$	50	6.25	50	3.13	12.5
3d	iso- Pr	>50	>50	>50	12.5	>50
3 e	cycHex	>50	>50	>50	>50	>50
2 a		0.78	1.56	0.78	0.78	0.78
2b		0.39	0.39	0.39	0.39	0.39
1		6.25	6.25	3.13	3.13	6.25
Vancomycin		0.78	0.78	0.78	0.78	12.5

a) Inoculum size, one loopful of $10^{6} \mathrm{CFU} / \mathrm{ml}$. b) MRSA. c) VRE.

5-thiocarbamate derivatives for antibacterial activities. The results of antibacterial activities are summarized in Table 1. The activity of compound 3a showed 4 times stronger than that of linezolid (1). However, the introduction of lengthened alkyl groups or cycloalkyl group at R^{1} position decreased antibacterial activities. Thus, we focused O-methyl thiocarbamate group at 5 -position, and synthesized some 4^{\prime}-substituted oxazolidinones in this series. The antibacterial activities and hydrophobic parameter (calculated $\log P$ value) of 5thiocarbamate oxazolidinones are summarized in Table 2.

In our previous paper, ${ }^{1 b)}$ we reported that the balance between 5-hydrophobic (or hydrophilic) substituent and hydrophilic (or hydrophobic) substituents on the benzene ring is one of the important factors in antibacterial activity in the 5-thiocarbonyl oxazolidinones. In this series, the prominent decrease of antibacterial activity was not observed. We assume that 5-O-methyl thiocarbamate group would be suitable for various substituents on the benzene ring because of its moderate hydrophilic substituent ($\pi \mathrm{a}=0.30$) compared with 5 -thiourea $(\pi \mathrm{a}=-0.66)$ or 5 -dithiocarbamate $(\pi \mathrm{a}=0.88)$ groups. ${ }^{1 b)}$

We described earlier ${ }^{1 b)}$ that the favorable calculated $\log P$ value for antibacterial activity in the case of 5-thiocarbonyl oxazolidinones was -1 to +2 . In this series, we also measured the calculated $\log P$ value. ${ }^{5)}$ The compounds within the favorable calculated $\log P$ value range provided stable antibacterial activities as we expected. Among them, compounds $\mathbf{4 b}$ (calculated $\log P$ value: 1.51), $\mathbf{4 h}$ (1.01), and $\mathbf{4 i}$ (0.73) showed stronger in vitro activities than linezolid (1). On the contrary, compound $\mathbf{4 e}$, whose calculated $\log P$ value
was 3.10 , showed weak activity. It was recently reported that the azole analogues at 4^{\prime}-position have interesting levels of antibacterial activity in 5-acetamide oxazolidinones. ${ }^{6}$ Compounds $\mathbf{4 n}$ and $\mathbf{4 p}$ also showed strong in vitro activities. The activities of compounds $\mathbf{4 b}, \mathbf{4 h}, \mathbf{4 i}, \mathbf{4 n}$ and $\mathbf{4 p}$ were 8-16 times stronger than that of linezolid (1).

In Vivo Activity The compounds that exhibited more potent in vitro antibacterial activity than linezolid (1) were actually tested for in vivo antibacterial activity against grampositive bacteria (S. aureus S мітн). The $\mathrm{ED}_{50}(\mathrm{mg} / \mathrm{kg}$) value of the oral route was determined based on the survival rates on day 7 after infection in mice. Among the oxazolidinones, compounds $\mathbf{3 a}$ and $\mathbf{4 h}$ exhibited higher in vivo activities than linezolid (1) as shown in Table 3. The data showed 5-6 fold increases in oral activity compared with linezolid (1). Moreover, the thiocarbamate derivative 3a showed stronger in vivo activity than the corresponding thiourea derivative 2a. To learn the reason why the activity of $\mathbf{3 a}$ was stronger than that of 2a, we examined their pharmacokinetic profiles. (Table 4)

It was found that the plasma concentration of compound 3a immediately disappeared. The plasma concentrations of S-oxide and S, S-dioxide, however, reached the maximum of $3.48 \mu \mathrm{~g} / \mathrm{ml}$ at 1.0 h and $4.92 \mu \mathrm{~g} / \mathrm{ml}$ at 6.0 h , respectively, after oral dosing of compound 3a. Both of them showed greatly higher serum concentrations compared to unchanged compound 3a, suggesting that the metabolites might be responsible for in vivo activity in the mouse systemic infectious model. On the other hand, compound 2a, which had 5thiourea moiety, might be similarly metabolized to S-oxide or S, S-dioxide. But the in vitro activity of S-oxide was weak. ${ }^{16)}$

Table 2. In Vitro Antibacterial Activities and Hydrophilic Parameter of 5-Thiocarbamate Oxazolidinones

			$\left.\operatorname{MICs}(\mu \mathrm{g} / \mathrm{ml})^{a}\right)$				
		Hydrophilic parameter	Standard strain	Clinical isolates			
No.	A	Calculated $\log P^{b)}$	S. aureus Smith	S. aureus HPC1360 ${ }^{c}$	S. aureus HPC428 ${ }^{\text {c }}$	E. faecium HPC1322	E. casseliflavus HPC1310 ${ }^{\text {d }}$
4a	$\widehat{C l}^{\mathrm{N}}$	0.94	3.13	3.13	3.13	1.56	1.56
4b	EN-	1.51	0.39	0.78	0.39	0.39	0.78
4c		2.07	3.13	3.13	1.56	1.56	3.13
4d		2.57	3.13	3.13	3.13	1.56	3.13
4e		3.10	6.25	6.25	6.25	6.25	6.25
4f		1.05	3.13	1.56	3.13	1.56	3.13
4g		2.64	3.13	1.56	1.56	1.56	3.13
3a		1.01	1.56	1.56	0.78	0.78	1.56
4h		-1.00	0.78	0.78	0.78	0.39	0.78
4i		-0.73	0.78	0.78	0.78	0.39	0.78
$4 \mathbf{j}^{e}$		0.45	1.56	1.56	1.56	0.78	1.56
4k		0.89	1.56	1.56	1.56	0.78	0.78
41		1.43	1.56	1.56	1.56	0.78	1.56
4m		1.96	3.13	1.56	1.56	0.78	1.56
4n		1.86	0.78	0.39	0.39	0.39	0.39
40	$=\mathrm{N}-$	0.30	1.56	1.56	0.78	0.78	0.78
4p	NH_{N}	0.76	0.78	0.78	0.39	0.39	0.39
2a			0.78	1.56	0.78	0.78	0.78
2b			0.39	0.39	0.39	0.39	0.39
1			6.25	6.25	3.13	3.13	6.25
Vancomycin			0.78	0.78	0.78	0.78	12.5

a) Inoculum size, one loopful of $10^{6} \mathrm{CFU} / \mathrm{ml}$. b) Ref. 5). c) MRSA. d) VRE. e) Ref. 7).

Table 3. In Vivo Activity in Mouse Systemic Infectious Model

Compound	$\mathrm{MIC}^{a)}$ $(\mu \mathrm{g} / \mathrm{ml})$	$\mathrm{ED}_{50}{ }^{\text {b }}$ $(\mathrm{mg} / \mathrm{kg} /$ dose $)$	[95\% confidence limits]
$\mathbf{3 a}$	1.56	1.34	$[0.92-1.91]$
4b	0.39	>5.00	$[0.81-1.56]$
4h	0.78	1.15	$[8.16-27.0]$
$\mathbf{2 a}$	0.78	$14.3^{c)}$	$[4.90-10.1]$
$\mathbf{2 b}$	0.39	$>20.0^{c)}$	$[4.60-10.1]$
$\mathbf{1}$	6.25	7.03	$6.80^{c)}$

a) MIC for S. aureus Smith. b) $\mathrm{ED}_{50}: 50 \%$ effective dose (calculated on day 7 by Probit method). c) Non-fasted. Animals: male ICR mice, 4 -week-old, fasted. Bacterial strain: Staphylococcus aureus Smith. Treatment: Mice were infected intraperitoneally with bacterial suspension. One and four hours after infection, the compounds were administered orally to animals.

Table 4. Pharmacokinetic Profiles of Unchanged 3a and Its Metabolites in Serum after a Single Administration to Mice at a Dose of $20 \mathrm{mg} / \mathrm{kg}$

Compound		$C_{\max }$ $(\mu \mathrm{g} / \mathrm{ml})$	$T_{\max }$ (h)	$A U C_{0-\infty}$ $(\mu \mathrm{g} \cdot \mathrm{h} / \mathrm{ml})$	$T_{1 / 2}$ $(\mathrm{~h})$
3a	S, S-Dioxide	4.92	6.00	$30.8^{a)}$	57.8
	S-Oxide	3.48	1.00	3.9	1.82
	Unchanged	0.071	0.25	$0.046^{b)}$	1.14
$\mathbf{2 a}$	Unchanged	1.10	0.25	2.40	1.33
$\mathbf{1}$	Unchanged	24.8	0.083	50.7	1.66

Each value represents the mean of four mice. a) The value of S-dioxide was $A U C_{0-8 \mathrm{~h}}$. b) The value of unchanged $\mathbf{3 a}$ was $A U C_{0-4 \mathrm{~h}}$.

Table 5. Physical Data for Compounds 3

No.	Yield (\%) ${ }^{\text {a }}$	$\begin{gathered} \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right) \\ \text { (Recryst. Solv.) } \end{gathered}$	Formula	Analysis (\%) Calcd (Found)			$\begin{gathered} {[\alpha]_{\mathrm{D}}^{20}} \\ \text { DMSO } \\ (c=0.1) \end{gathered}$
				C	H	N	
3a	39	$\begin{gathered} 141.5-143 \\ (\mathrm{EtOH}) \end{gathered}$	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$	$\begin{array}{r} 49.85 \\ (49.58 \end{array}$	$\begin{aligned} & 5.23 \\ & 5.05 \end{aligned}$	$\begin{aligned} & 10.90 \\ & 10.82) \end{aligned}$	-25.9
3b	78	$\begin{gathered} 103.5-104.5 \\ \text { (iso-PrOH) } \end{gathered}$	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$	$\begin{array}{r} 51.11 \\ (51.20 \end{array}$	$\begin{aligned} & 5.55 \\ & 5.67 \end{aligned}$	$\begin{aligned} & 10.52 \\ & 10.38) \end{aligned}$	-23.1
3c	69	$\begin{aligned} & 124-125 \\ & \text { (iso-PrOH) } \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$	$\begin{array}{r} 52.28 \\ (52.22 \end{array}$	$\begin{aligned} & 5.85 \\ & 5.86 \end{aligned}$	$\begin{aligned} & 10.16 \\ & 10.12) \end{aligned}$	-30.9
3d	39	$\begin{gathered} 164-166 \\ \text { (iso- } \mathrm{Pr}_{2} \mathrm{O}-\text { iso }-\mathrm{PrOH} \text {) } \end{gathered}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$	$\begin{array}{r} 52.28 \\ (52.06 \end{array}$	$\begin{aligned} & 5.85 \\ & 5.56 \end{aligned}$	$\begin{aligned} & 10.16 \\ & 10.01) \end{aligned}$	-32.1
3 e	32	$\begin{gathered} 150-152 \\ (\mathrm{MeOH}) \end{gathered}$	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$	$\begin{array}{r} 55.61 \\ (55.49 \end{array}$	$\begin{aligned} & 6.22 \\ & 5.97 \end{aligned}$	$\begin{aligned} & 9.26 \\ & 9.07) \end{aligned}$	-26.9

a) Yields were calculated from compounds 5 .

Table 6. Physical Data for Compounds 3

No.	${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\text { in DMSO- } d_{6}\right)^{a}{ }^{\text {d }} \boldsymbol{\delta}$ (ppm)
3a	$2.73(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.26(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.70-3.85(3 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.09(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.75-4.93(1 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}$, $\mathrm{t}, J=9.5 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{dd}, J=9.5,2.5 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{dd}, J=14.5,2.5 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{br}$ s)
3b	$\begin{aligned} & 1.26(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.73(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.25(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.70-3.90(3 \mathrm{H}, \mathrm{~m}), 4.09(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.43(2 \mathrm{H}, \mathrm{q}, J=7.5 \\ & \mathrm{Hz}), 4.75-4.90(1 \mathrm{~m}, \mathrm{~m}), 7.07(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dd}, J=14.5,2.5 \mathrm{~Hz}), 9.04(1 \mathrm{H}, \mathrm{brs}) \end{aligned}$
3 c	$0.91(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.67(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 2.73(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.25(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.75-3.90(3 \mathrm{H}, \mathrm{m}), 4.09(1 \mathrm{H}, \mathrm{t}, J=9$ $\mathrm{Hz}), 4.34(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dd}, J=14.5,2.5$ $\mathrm{Hz}), 9.06(1 \mathrm{H}, \mathrm{br}$ s)
3d	$1.27(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 2.73(4 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 3.25(4 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 3.60-3.85(3 \mathrm{H}, \mathrm{m}), 4.09(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.60-4.90(1 \mathrm{H}$, $\mathrm{m}), 5.44(1 \mathrm{H}, \mathrm{sep}, J=6 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{dd}, J=9.5,2.5 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{dd}, J=14.5,2.5 \mathrm{~Hz}), 8.96(1 \mathrm{H}, \mathrm{brs})$
3 e	$1.20-1.90(10 \mathrm{H}, \mathrm{m}), 2.73(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.25(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.70-3.85(3 \mathrm{H}, \mathrm{m}), 4.09(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.70-4.90(1 \mathrm{H}, \mathrm{m})$, $5.23(1 \mathrm{H}, \mathrm{brs}), 7.07(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dd}, J=15,2.5 \mathrm{~Hz}), 8.99(1 \mathrm{H}, \mathrm{br} \mathrm{s})$

a) Measured at $100^{\circ} \mathrm{C}$.

In conclusion, 5-thiocarbamate oxazolidinones which had both a good balance of hydrophilic parameters ($\pi \mathrm{a}, \pi \mathrm{b}$) and favorable calculated $\log P$ value (-1 to +2) were synthesized and their antibacterial activity were evaluated. Among them, compounds $\mathbf{3 a}$ and $\mathbf{4 h}$ showed good in vitro and in vivo activities compared with linezolid. These compounds are thus expected to be effective candidates for numerous grampositive infections.

Experimental

Melting points were measured with a Yanagimoto melting point apparatus and are uncorrected. Elemental analyses were measured with a Yanagimoto MT-5 elemental analysis apparatus, and were within $\pm 0.4 \%$ of calculated values. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were measured with a JEOL A-500 $(500 \mathrm{MHz})$ or JEOL JNM-LA300 $(300 \mathrm{MHz})$ spectrometer using tetramethylsilane as an internal standard. High-resolution mass spectra were measured on a JEOL DX-300 mass spectrometer. Specific optical rotations were measured on a JASCO DIP-370 polarimeter. Column chromatography was carried out with silica gel [Kieselgel 60 (Merck)]. TLC was conducted on 0.25 mm precoated silica gel plates $\left(60 \mathrm{~F}_{254}\right.$, Merck). All extracted solvents were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo.

O-Methyl (S)-[[3-[3-Fluoro-4-(4-thiomorpholinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]thiocarbamate (3a) To a solution of $\mathrm{NaH}(60 \%$ in oil, $0.53 \mathrm{~g}, 13.3 \mathrm{mmol})$ in $\mathrm{MeOH}(44 \mathrm{ml})$, a mixture of $\mathbf{5}^{1 a)}(4.41 \mathrm{~g}, 12.5 \mathrm{mmol})$ was added under ice cooling, followed by stirring at room temperature for 3 h . Then the reaction mixture was poured into ice water and adjusted to pH 7 with dilute hydochloric acid. The precipitates were collected by filtration and washed with water to afford 3a as pale brown crystals. The physicochemical data are listed in Tables 5 and 6.

Compounds $\mathbf{3 b}$ - e were respectively prepared from $\mathbf{5}$ in a similar manner The physicochemical data are listed in Tables 5 and 6.
(S)-5-Aminomethyl-3-[3-fluoro-4-(4-methyl-1-piperazinyl)phenyl]oxa-
zolidine-2-one (7k) A mixture of (R)-5-azidomethyl-3-[3-fluoro-4-(4-methyl-1-piperazinyl)phenyl]oxazolidine-2-one ($11.2 \mathrm{~g}, 27.1 \mathrm{mmol}$), which was prepared from compound 6 by the usual method, ${ }^{16)}$ triphenylphosphine ($7.82 \mathrm{~g}, 29.8 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}(4.8 \mathrm{ml}, 271 \mathrm{mmol})$ in tetrahydrofuran (THF) $(170 \mathrm{ml})$ was heated at $40^{\circ} \mathrm{C}$ for 17 h . After cooling, the reaction mixture was diluted with water and dilute hydrochloric acid and extracted with AcOEt. The aqueous layer was made alkaline with aqueous NaOH and extracted with AcOEt. The extract was washed with water, dried and concentrated to afford $7 \mathbf{k}(4.55 \mathrm{~g}, 54 \%)$ as pale yellow amorphous. $[\alpha]_{\mathrm{D}}^{20}-34.0^{\circ}$ $\left(c=0.1\right.$, DMSO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.89(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.22(3 \mathrm{H}, \mathrm{s}), 2.46$ $(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}), 2.98$ ($4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}$), $3.81(1 \mathrm{H}, \mathrm{dd}, J=9,6 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.54-4.61$ $(1 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dd}, J=8.5,2 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{dd}$, $J=15.5,2 \mathrm{~Hz}$).

Compounds $7 \mathbf{7 l}-\mathbf{p}$ were respectively prepared from the corresponding 6 in a similar manner.
(S)-5-Aminomethyl-3-[4-(4-ethyl-1-piperazinyl)-3-fluorophenyl]oxazo-lidine-2-one (71): Colorless prisms, 87%, mp : $104-105.5^{\circ} \mathrm{C}$ (AcOEt-isopropyl ether (iso- $\left.\mathrm{Pr}_{2} \mathrm{O}\right)$). $[\alpha]_{\mathrm{D}}^{20}-37.0^{\circ}(c=0.1, \mathrm{DMSO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO$\left.d_{6}\right) \delta: 1.02(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.52(2 \mathrm{H}, \mathrm{brs}), 2.38(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 2.51$ $(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{dd}, J=13.5,5 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=13.5,5 \mathrm{~Hz})$, $2.98(4 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{dd}, J=9,6.5 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz})$, $4.50-4.60(1 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.46$ (1 H , dd, $J=15,2.5 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{2}: \mathrm{C}, 59.61 ; \mathrm{H}, 7.19$; N, 17.38. Found: C, 59.46; H, 7.17; N, 17.37.
(S)-5-Aminomethyl-3-[3-fluoro-4-(4-propyl-1-piperazinyl)phenyl]oxa-zolidine-2-one ($7 \mathbf{m}$): Pale brown crystals, 89%, mp : $93-95^{\circ} \mathrm{C}$ (AcOEt-iso- $\left.\mathrm{Pr}_{2} \mathrm{O}\right) \cdot[\alpha]_{\mathrm{D}}^{20}-37.9^{\circ}(c=0.1, \mathrm{DMSO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 0.88(3 \mathrm{H}$, $\mathrm{t}, J=7.5 \mathrm{~Hz}), 1.46(2 \mathrm{H}$, sextet, $J=7.5 \mathrm{~Hz}), 1.53(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.29(2 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}), 2.50(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{dd}$, $J=14,5 \mathrm{~Hz}), 2.98(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{dd}, J=9,6.5 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{t}$, $J=9 \mathrm{~Hz}), 4.55-4.65(1 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dd}, J=9$, $2.5 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{dd}, J=15,2.5 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{FN}_{4} \mathrm{O}_{2}$: C, 60.70; H, 7.49; N, 16.65. Found: C, 60.47; H, 7.38; N, 16.55.
(S)-5-Aminomethyl-3-[3-fluoro-4-(1-pyrrolyl)phenyl]oxazolidine-2one (7n): Pale brown amorphous, $95 \% .[\alpha]_{\mathrm{D}}^{20}-21.9^{\circ}\left(c=0.1\right.$, DMSO). ${ }^{1} \mathrm{H}-$ NMR (DMSO- $\left.d_{6}\right) \delta: 1.75(2 \mathrm{H}, \mathrm{brs}), 2.82(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}), 2.89(1 \mathrm{H}$, $\mathrm{dd}, J=14,5 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{dd}, J=9,6 \mathrm{~Hz}), 4.11(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.60-4.70$ $(1 \mathrm{H}, \mathrm{m}), 6.26(2 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 7.09(2 \mathrm{H}, \mathrm{q}, J=2 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{dd}, J=9$, $2.5 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{dd}, J=14,2.5 \mathrm{~Hz})$.
(S)-5-Aminomethyl-3-[3-fluoro-4-(1-pyrazolyl)phenyl]oxazolidine-2one (7o): Colorless crystals, $74 \%, \mathrm{mp}$: $127-127.5^{\circ} \mathrm{C}$ (2-propanol (iso$\operatorname{PrOH})$). $[\alpha]_{\mathrm{D}}^{20}-51.9^{\circ}(c=0.1, \mathrm{DMSO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.54(2 \mathrm{H}$, br s), $2.83(1 \mathrm{H}, \mathrm{dd}, J=13.5,5 \mathrm{~Hz}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=13.5,5 \mathrm{~Hz}), 3.91(1 \mathrm{H}$, $\mathrm{dd}, J=9,6 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.60-4.70(1 \mathrm{H}, \mathrm{m}), 6.55(1 \mathrm{H}, \mathrm{t}$, $J=2.5 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{dd}, J=14.5,2.5 \mathrm{~Hz})$, $7.80-8.00(2 \mathrm{H}, \mathrm{m}), 8.13(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN}_{4} \mathrm{O}_{2}$: C, 56.52 H, 4.74; N, 20.28. Found: C, 56.51; H, 4.81; N, 20.29.
(S)-5-Aminomethyl-3-[3-fluoro-4-(1-imidazolyl)phenyl]oxazolidine-2one (7p): Colorless oil, 67\%, $[\alpha]_{\mathrm{D}}^{20}-44.7^{\circ}(c=0.1, ~ D M S O) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\right.$ DMSO- $\left.d_{6}\right) \delta: 1.55(2 \mathrm{H}, \mathrm{brs}), 2.82(1 \mathrm{H}, \mathrm{dd}, J=14,5 \mathrm{~Hz}), 2.89(1 \mathrm{H}$, dd, $J=14,5 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=9,5.5 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.60-4.70$ $(1 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.47(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{s}), 7.64(1 \mathrm{H}, \mathrm{t}$, $J=9 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{s})$
(R)-[[3-[3-Fluoro-4-(4-methyl-1-piperazinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]isothiocyanate ($\mathbf{8 k}$) A mixture of $\mathbf{7 k}(1.00 \mathrm{~g}, 3.24 \mathrm{mmol})$, carbon disulfide $(0.40 \mathrm{ml}, 6.49 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.46 \mathrm{ml}, 3.24 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Ethyl chloroformate ($0.31 \mathrm{ml}, 3.24 \mathrm{mmol}$) was added dropwise to the mixture, and stirred at the same temperature for 1 h . The reaction mixture was extracted with AcOEt. The extract was washed with brine, dried and concentrated to afford $\mathbf{8 k}(0.70 \mathrm{~g}, 62 \%)$ as colorless crystals. Recrystallization from a mixture of THF and iso- $\mathrm{Pr}_{2} \mathrm{O}$ afforded colorless prisms. mp: $127-127.5^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}-159.0^{\circ} \quad(c=0.1$, DMSO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.36(3 \mathrm{H}, \mathrm{s}), 2.60(4 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}), 3.10$ $(4 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}), 3.80-3.88(2 \mathrm{H}, \mathrm{m}), 3.95(1 \mathrm{H}, \mathrm{dd}, J=14.5,5.5 \mathrm{~Hz}), 4.15$
$(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.78-4.85(1 \mathrm{H}, \mathrm{m}), 6.96(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{dd}$, $J=9,2 \mathrm{~Hz}), 7.42(1 \mathrm{H}$, dd, $J=14,2 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, $54.84 ;$ H, 5.47 ; N, 15.99. Found: C, 54.83 ; H, 5.41 ; N, 15.84.

Compounds 81-p were respectively prepared from the corresponding 7 in a similar manner.
(R)-[[3-[4-(4-Ethyl-1-piperazinyl)-3-fluorophenyl]-2-oxo-5-oxazolidinyl]methyl]isothiocyanate (81): Colorless prisms, 75%, $\mathrm{mp}: 86.5-87.5^{\circ} \mathrm{C}$ (AcOEt-iso- $\left.\operatorname{Pr}_{2} \mathrm{O}\right) \cdot[\alpha]_{\mathrm{D}}^{20}-151.2^{\circ}\left(c=0.1\right.$, DMSO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta$: $1.02(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.38(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 2.51(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 2.99$ ($4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{dd}, J=9,5.5 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{dd}, J=15.5,5 \mathrm{~Hz})$, $4.10(1 \mathrm{H}, \mathrm{dd}, J=15.5,3 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.90-5.00(1 \mathrm{H}, \mathrm{m}), 7.05$ $(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=15,2.5 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{~S}$: C, $56.03 ; \mathrm{H}, 5.81 ; \mathrm{N}, 15.37$. Found: C, 56.09; H, 5.76; N, 15.46.
(R)-[[3-[3-Fluoro-4-(4-propyl-1-piperazinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]isothiocyanate (8m): Colorless crystals, 76%, mp: $93-94{ }^{\circ} \mathrm{C}$ (AcOEt-iso- $\left.\mathrm{Pr}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}-141.6^{\circ}(c=0.1, \mathrm{DMSO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta$: $0.88(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.46(2 \mathrm{H}$, sextet, $J=7.5 \mathrm{~Hz}), 2.29(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$, $2.50(4 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}), 2.99(4 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{dd}, J=9.5,6 \mathrm{~Hz})$, $4.02(1 \mathrm{H}, \mathrm{dd}, J=15.5,5 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}, J=15.5,3.5 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{t}$, $J=9.5 \mathrm{~Hz}), 4.90-5.00(1 \mathrm{H}, \mathrm{m}), 7.05(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dd}, J=9$, $2.5 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=15.5,2.5 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, 57.12; H, 6.13; N, 14.80. Found: C, 57.02; H, 6.13; N, 14.75.
(R)-[[3-[3-Fluoro-4-(1-pyrrolyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]isothiocyanate (8n): Pale brown crystals, 65%. mp: $129-129.5^{\circ} \mathrm{C}$ (iso$\operatorname{PrOH}) .[\alpha]_{\mathrm{D}}^{20}-168.6^{\circ}\left(c=0.1\right.$, DMSO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 3.88(1 \mathrm{H}$, dd, $J=9,5.5 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{dd}, J=15,5.5 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{dd}, J=15,3.5 \mathrm{~Hz})$, $4.26(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.95-5.05(1 \mathrm{H}, \mathrm{m}), 6.27(2 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 7.11(2 \mathrm{H}$, $\mathrm{t}, J=2.5 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{dd}$, $J=14,2.5 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 56.77$; H, 3.81; N, 13.24 . Found: C, 56.51; H, 3.97; N, 12.92.

Table 7. Physical Data for Compounds 4

No.	Yield (\%) ${ }^{a}$	$\begin{gathered} \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right) \\ \text { (Recryst. Solv.) } \end{gathered}$	Formula	Analysis (\%) Calcd (Found)			
				C	H	N	
4a	64	Amorphous	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}$	$\begin{gathered} 339.10529^{c} \\ (339.10536) \end{gathered}$			-27.0
4b	48	$\begin{aligned} & 147-148.5 \\ & (\mathrm{EtOH}) \end{aligned}$	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}$	$\begin{array}{r} 54.38 \\ (54.27 \end{array}$	$\begin{aligned} & 5.70 \\ & 5.75 \end{aligned}$	$\begin{aligned} & 11.89 \\ & 11.91) \end{aligned}$	-26.9
4c	14	$\begin{gathered} 117-118 \\ \text { (iso-PrOH) } \end{gathered}$	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}$	$\begin{array}{r} 55.57 \\ (55.35 \end{array}$	$\begin{aligned} & 6.03 \\ & 6.24 \end{aligned}$	$\begin{aligned} & 11.44 \\ & 11.33) \end{aligned}$	-29.1
4d	53	$\begin{gathered} 135-136 \\ \text { (iso-PrOH) } \end{gathered}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}$	$\begin{array}{r} 56.67 \\ (56.67 \end{array}$	$\begin{aligned} & 6.34 \\ & 6.24 \end{aligned}$	$\begin{aligned} & 11.02 \\ & 10.91) \end{aligned}$	-25.9
4e	46	$\begin{gathered} 112-114 \\ \text { (iso-PrOH) } \end{gathered}$	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}$	$\begin{array}{r} 57.70 \\ (57.70 \end{array}$	$\begin{aligned} & 6.63 \\ & 6.74 \end{aligned}$	$\begin{aligned} & 10.62 \\ & 10.53) \end{aligned}$	-24.1
4f	81	$\begin{aligned} & 112-113.5 \\ & \text { (iso-PrOH) } \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S}$	$\begin{array}{r} 54.39 \\ (54.19 \end{array}$	$\begin{aligned} & 6.09 \\ & 6.21 \end{aligned}$	$\begin{aligned} & 10.57 \\ & 10.47) \end{aligned}$	-24.1
4g	82	$\begin{gathered} 124.5-125.5 \\ \text { (iso-PrOH) } \end{gathered}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}$	$\begin{array}{r} 56.67 \\ (56.55 \end{array}$	$\begin{aligned} & 6.34 \\ & 6.50 \end{aligned}$	$\begin{aligned} & 11.02 \\ & 10.82) \end{aligned}$	-29.0
4h	57	$\begin{gathered} 206-207 \\ \left(\mathrm{CH}_{3} \mathrm{CN}\right) \end{gathered}$	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\begin{array}{r} 47.87 \\ (48.04 \end{array}$	$\begin{aligned} & 5.02 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 10.47 \\ & 10.51) \end{aligned}$	-25.0
4i	55	Oil	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}$	$\begin{gathered} 417.08284^{c} \\ (417.08123) \end{gathered}$			-23.9
4j	37	$\begin{gathered} 125-127 \\ \text { (iso-PrOH) } \end{gathered}$	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S}$	$\begin{array}{r} 52.02 \\ (52.10 \end{array}$	$\begin{aligned} & 5.46 \\ & 5.27 \end{aligned}$	$\begin{aligned} & 11.37 \\ & 11.31) \end{aligned}$	-28.1
4k	36	$\begin{gathered} 119.5-121.5 \\ \text { (iso-} \mathrm{PrOH}-\mathrm{iso}-\mathrm{Pr}_{2} \mathrm{O} \text {) } \end{gathered}$	$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S}$	$\begin{array}{r} 53.39 \\ 53.20 \end{array}$	$\begin{aligned} & 6.06 \\ & 5.94 \end{aligned}$	$\begin{aligned} & 14.65 \\ & 14.50) \end{aligned}$	-30.1
41	36	$\begin{gathered} 122-123 \\ \text { (iso-PrOH) } \end{gathered}$	$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S}$	$\begin{array}{r} 54.53 \\ (54.29 \end{array}$	$\begin{aligned} & 6.36 \\ & 6.10 \end{aligned}$	$\begin{aligned} & 14.13 \\ & 14.02) \end{aligned}$	-19.1
4m	63	$\begin{gathered} 128.5-129.5 \\ \text { (iso- } \mathrm{PrOH} \text {) } \end{gathered}$	$\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S}$	$\begin{array}{r} 55.59 \\ (55.36 \end{array}$	$\begin{aligned} & 6.63 \\ & 6.57 \end{aligned}$	$\begin{aligned} & 13.65 \\ & 13.57) \end{aligned}$	-25.0
4n	83	$\begin{gathered} 141.5-142.5 \\ \text { (iso- } \mathrm{PrOH} \text {) } \end{gathered}$	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}$	$\begin{array}{r} 55.00 \\ (54.97 \end{array}$	$\begin{aligned} & 4.62 \\ & 4.68 \end{aligned}$	$\begin{aligned} & 12.03 \\ & 11.86) \end{aligned}$	-33.9
40	85	$\begin{gathered} 127-127.5 \\ \left(\mathrm{AcOEt}-\mathrm{iso}-\mathrm{Pr}_{2} \mathrm{O}\right) \end{gathered}$	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S}$	$\begin{array}{r} 51.42 \\ (51.47 \end{array}$	$\begin{aligned} & 4.32 \\ & 4.30 \end{aligned}$	$\begin{aligned} & 15.99 \\ & 16.00) \end{aligned}$	-51.9
4p	65	Amorphous	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S}$		$\begin{aligned} & 0.0848 \\ & 0.0838 \end{aligned}$		-32.1

[^0]Table 8. Physical Data for Compounds 4

No.	${ }^{1} \mathrm{H}$-NMR (in DMSO- d_{6} (${ }^{a}$) δ (ppm)
4a	$2.29(2 \mathrm{H}$, quint, $J=7.5 \mathrm{~Hz}), 3.70-3.80(2 \mathrm{H}, \mathrm{m}), 3.86(4 \mathrm{H}, \mathrm{td}, J=8.5,2 \mathrm{~Hz}), 3.86-3.90(1 \mathrm{H}, \mathrm{m}), 3.89(3 \mathrm{H}, \mathrm{s}), 4.07(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz})$, $4.85-4.90(1 \mathrm{H}, \mathrm{m}), 6.54(1 \mathrm{H}, \mathrm{dd}, J=9,9 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{dd}, J=14.5,2.5 \mathrm{~Hz}), 9.30(1 \mathrm{H}, \mathrm{br} \mathrm{s})$
4b	$\begin{aligned} & 1.85-1.95(4 \mathrm{H}, \mathrm{~m}), 3.20-3.30(4 \mathrm{H}, \mathrm{~m}), 3.70-3.85(3 \mathrm{H}, \mathrm{~m}), 3.92(3 \mathrm{H}, \mathrm{~s}), 4.05(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.75-4.85(1 \mathrm{H}, \mathrm{~m}), 6.74(1 \mathrm{H}, \mathrm{t}, \\ & J=9 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{dd}, J=15.5,2.5 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{br} \mathrm{~s}) \end{aligned}$
4c	$1.50-1.60(2 \mathrm{H}, \mathrm{m}), 1.60-1.70(4 \mathrm{H}, \mathrm{m}), 2.90-3.00(4 \mathrm{H}, \mathrm{m}), 3.75-3.85(3 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.08(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.80-4.90$ $(1 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{z}), 7.38(1 \mathrm{H}, \mathrm{dd}, J=14.5,2.5 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{brs})$
4d	$0.95(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.25-1.40(2 \mathrm{H}, \mathrm{m}), 1.45-1.55(1 \mathrm{H}, \mathrm{m}), 1.65-1.75(2 \mathrm{H}, \mathrm{m}), 2.60-2.75(2 \mathrm{H}, \mathrm{m}), 3.25-3.35(2 \mathrm{H}, \mathrm{m})$, $3.70-3.85(3 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.08(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.37$ ($1 \mathrm{H}, \mathrm{dd}, J=15,2.5 \mathrm{~Hz}$), $9.10(1 \mathrm{H}, \mathrm{brs})$
4 e	$0.89(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.25-1.35(5 \mathrm{H}, \mathrm{m}), 1.70-1.75(2 \mathrm{H}, \mathrm{m}), 2.66(2 \mathrm{H}, \mathrm{t}, J=11.5 \mathrm{~Hz}), 3.30(2 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 3.70-3.85(3 \mathrm{H}$, $\mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.08(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{dd}, J=8,2.5 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{dd}, J=15$, $2.5 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{brs})$
4 f	$1.56-1.65(2 \mathrm{H}, \mathrm{m}), 1.85-1.95(2 \mathrm{H}, \mathrm{m}), 2.75-2.85(2 \mathrm{H}, \mathrm{m}), 3.15-3.25(2 \mathrm{H}, \mathrm{m}), 3.27(3 \mathrm{H}, \mathrm{s}), 3.30-3.40(1 \mathrm{H}, \mathrm{m}), 3.75-3.85(3 \mathrm{H}$, $\mathrm{m}), 3.89(3 \mathrm{H}, \mathrm{s}), 4.10(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 7.05(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{dd}, J=14.5$, $2.5 \mathrm{~Hz}), 9.39(1 \mathrm{H}, \mathrm{br}$ s)
4g	$1.55-1.65(4 \mathrm{H}, \mathrm{~m}), 1.70-1.80(4 \mathrm{H}, \mathrm{~m}), 3.25-3.35(4 \mathrm{H}, \mathrm{~m}), 3.70-3.85(3 \mathrm{H}, \mathrm{~m}), 3.92(3 \mathrm{H}, \mathrm{~s}), 4.06(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.75-4.90$ $(1 \mathrm{H}, \mathrm{~m}), 6.92(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{dd}, J=16,2.5 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{br} \mathrm{~s})$
4h	$2.80(2 \mathrm{H}, \mathrm{dt}, J=14,3 \mathrm{~Hz}), 3.20(2 \mathrm{H}, \mathrm{td}, J=14,3 \mathrm{~Hz}), 3.21(2 \mathrm{H}, \mathrm{dt}, J=14,4 \mathrm{~Hz}), 3.60(2 \mathrm{H}, \mathrm{t}, J=14 \mathrm{~Hz}), 3.75-3.85(3 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}$, s), $4.10(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 7.10-7.20(2 \mathrm{H}, \mathrm{m}), 7.44(1 \mathrm{H}, \mathrm{dd}, J=14.5,2.5 \mathrm{~Hz}), 9.11(1 \mathrm{H}, \mathrm{br}$ s)
$4 i$	$3.19(4 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 3.51(4 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 3.80-3.90(3 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.10(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 7.15-$ $7.25(2 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{br} \mathrm{s})$
4j	$\begin{aligned} & 3.00(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.73(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.75-3.85(3 \mathrm{H}, \mathrm{~m}), 3.92(3 \mathrm{H}, \mathrm{~s}), 4.09(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.75-4.95(1 \mathrm{H}, \mathrm{~m}), 7.04(1 \mathrm{H}, \mathrm{t}, \\ & J=9 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{dd}, J=9,3 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{dd}, J=14.5,3 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{brs}) \end{aligned}$
4k	$\begin{aligned} & 2.23(3 \mathrm{H}, \mathrm{~s}), 2.47(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.01(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, 3.70-3.85(3 \mathrm{H}, \mathrm{~m}), 3.92(3 \mathrm{H}, \mathrm{~s}), 4.08(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.80-4.90(1 \mathrm{H}, \mathrm{~m}), \\ & 7.02(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dd}, J=15.5,2.5 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{br} \mathrm{~s}) \end{aligned}$
41	$\begin{aligned} & 1.02(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 2.40(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 2.52(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.01(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.70-3.85(3 \mathrm{H}, \mathrm{~m}), 3.92(3 \mathrm{H}, \mathrm{~s}), 4.08(1 \mathrm{H}, \mathrm{t}, \\ & J=9 \mathrm{~Hz}), 4.80-4.90(1 \mathrm{H}, \mathrm{~m}), 7.02(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dd}, J=15.5,2.5 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{br}) \end{aligned}$
4m	$0.88(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.47(2 \mathrm{H}$, sextet, $J=7.5 \mathrm{~Hz}), 2.31(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.51(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.01(4 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}), 3.70-3.85$ $(3 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.08(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dd}$, $J=15,2.5 \mathrm{~Hz}), 9.10(1 \mathrm{H}, \mathrm{brs})$
4n	$3.75-3.90(3 \mathrm{H}, \mathrm{m}), 3.93(3 \mathrm{H}, \mathrm{s}), 4.18(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.85-4.95(1 \mathrm{H}, \mathrm{m}), 6.26(2 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 7.06(2 \mathrm{H}, \mathrm{q}, J=2.5 \mathrm{~Hz}), 7.38(1 \mathrm{H}$, $\mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{dd}, J=14,2.5 \mathrm{~Hz}), 9.13(1 \mathrm{H}, \mathrm{br} \mathrm{s})$
40	$3.75-3.90(3 \mathrm{H}, \mathrm{m}), 3.93(3 \mathrm{H}, \mathrm{s}), 4.20(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.85-4.95(1 \mathrm{H}, \mathrm{m}), 6.51(1 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{dd}, J=9,2 \mathrm{~Hz}), 7.67(1 \mathrm{H}$, dd, $J=14,2 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 8.06(1 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 9.13(1 \mathrm{H}, \mathrm{br} \mathrm{s})$
4p	$3.80-3.90(3 \mathrm{H}, \mathrm{m}), 3.95(3 \mathrm{H}, \mathrm{s}), 4.19(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 4.95-5.00(1 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.44(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{s})$, $7.65(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{s}), 9.33(1 \mathrm{H}, \mathrm{br} \mathrm{s})$

[^1](R)-[[3-[3-Fluoro-4-(1-pyrazolyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]isothiocyanate (8o): Colorless prisms, $81 \%, \mathrm{mp}$: $139.5-141{ }^{\circ} \mathrm{C}$ (AcOEt). $[\alpha]_{\mathrm{D}}^{20}-178.4^{\circ}\left(c=0.1\right.$, DMSO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 3.90(1 \mathrm{H}, \mathrm{dd}, J=9$, $6 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{dd}, J=15.5,5 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{dd}, J=15.5,3 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{t}$, $J=9 \mathrm{~Hz}), 4.95-5.05(1 \mathrm{H}, \mathrm{m}), 6.55(1 \mathrm{H}, \mathrm{s}), 7.48(1 \mathrm{H}, \mathrm{dd}, J=9,2.5 \mathrm{~Hz}), 7.73$ $(1 \mathrm{H}, \mathrm{dd}, J=14,2.5 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{s}), 7.81(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{t}$, $J=2.5 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 52.82 ; \mathrm{H}, 3.48 ; \mathrm{N}, 17.60$. Found: C, 52.87; H, 3.53; N, 17.49.
(R)-[[3-[3-Fluoro-4-(1-imidazolyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]isothiocyanate (8p): Pale yellow oil, 78%. $[\alpha]_{\mathrm{D}}^{20}-144.5^{\circ}(c=0.1$, DMSO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 3.89(1 \mathrm{H}, \mathrm{dd}, J=9.5,5.5 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{dd}, J=15$, $5.5 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{dd}, J=15,3.5 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz}), 5.00-5.10(1 \mathrm{H}$, m), $7.12(1 \mathrm{H}, \mathrm{s}), 7.49(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{s}), 7.67(1 \mathrm{H}, \mathrm{t}$, $J=8.5 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{s})$.

O-Methyl (\boldsymbol{S})-[[3-[3-Fluoro-4-(4-methyl-1-piperazinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]thiocarbamate (4k) To a solution of $\mathrm{NaH}(60 \mathrm{wt} \%$ in oil, $0.18 \mathrm{~g}, 7.53 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{ml})$, a mixture of $\mathbf{8 k}(1.32 \mathrm{~g}, 3.77$ $\mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ was added under ice cooling, followed by stirring at room temperature for 17 h . Then the reaction mixture was poured into ice water and adjusted to pH 7 with dilute hydochloric acid. The precipitates were collected by filtration and washed with water to afford $\mathbf{4 k}$ as colorless crystals. The physicochemical data are listed in Tables 7 and 8.

Compounds 4 were respectively prepared from the corresponding 8 in a similar manner. The physicochemical data are listed in Tables 7 and 8.

In Vitro Antibacterial Test These studies were conducted according to the method of the Japan Society of Chemotherapy. ${ }^{8)}$ The MICs $(\mu \mathrm{g} / \mathrm{ml})$ were determined by an agar dilution method with Muller-Hinton agar (MHA, Difco Laboratories, Detroit, Mich). Bacterial suspensions for inocula were prepared by diluting overnight cultures of organisms to give a final concentration of $10^{6} \mathrm{CFU} / \mathrm{ml}$, and one loopful ($5 \mu \mathrm{l}$) of an inoculum, corresponding
to about $5 \times 10^{3} \mathrm{CFU}$ per spot was inoculated on drug-containing agar plates. The plates were incubated for $18-24 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$. The MIC was defined as the lowest drug concentration that prevented visible growth of bacteria.

In Vivo Antibacterial Test Four week old male ICR mice ($18-21 \mathrm{~g}$ body weight) were infected intraperitoneally with bacterial suspension. The bacterium used for infection was S. aureus Smith ($3-7 \times 10^{7}$). Following infection, graded doses of compounds were administered orally to mice in groups of 10 each. The ED_{50}, including 95% confidence limits, was calculated by the probit method ${ }^{99}$ from the survival rates on day 7 after infection.

Acknowledgement The authors are grateful to Drs. E. Takahara and T. Mushiroda for pharmacokinetic studies.

References and Notes

1) a) Part 1: Tokuyama R., Takahashi Y., Tomita Y., Suzuki T., Yoshida T., Iwasaki N., Kado N., Okezaki E., Nagata O., Chem. Pharm. Bull., 49, 347-352 (2001); b) Part 2: Tokuyama R., Takahashi Y., Tomita Y., Tsubouchi H., Yoshida T., Iwasaki N., Kado N., Okezaki E., Nagata O., ibid., 49, 353-360 (2001).
2) Gregory W. A., Brittelli D. R., Wang C.-L. J., Wuonola M. A., McRipley R. J., Eustice D. C., Eberly V. S., Bartholomew P. T., Slee A. M., Forbes M., J. Med. Chem., 32, 1673-1681 (1989).
3) Eustice D. C., Feldman P.A., Zajac I., Slee A. M., Antimicrob. Agents Chemother., 32, 1218-1222 (1988).
4) a) Brickner S. J., Hutchinson D. K., Barbachyn M. R., Garmon S. A., Grega K. C., Hendges S. K., Manninen P. R., Toops D. S., Ulanowicz D. A., Kilburn J. O., Glickman S., Zurenko G. E., Ford C. W., 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, September, 1995, F 208 p. 149; b) Brickner S. J., Hutchinson D. K., Barbachyn M. R., Manninen P. R., Ulanowicz D.
A., Garmon S. A., Grega K. C., Hendges S. K., Toops D. S., Ford C. W., Zurenko G. E., J. Med. Chem., 39, 673-679 (1996).
5) Calculated $\log P$ values were measured by $\mathrm{ACD} / \mathrm{Labs} \log P$ calculated., ver. 3.0 (Advanced Chemistry Development, Inc.)
6) Hutchinson D. K., World Intellectual Property Organization 9623788 (1996) [Chem. Abstr., 125, $247827 b$ (1996)]; Genin M. J., Allwine D. A., Anderson D. J., Barbachyn M. R., Emmert D. E., Garmon S. A., Graber D. R., Grega K. C., Hester J. B., Hutchinson D. K., Morris J., Reischer R. J., Ford C. W., Zurenko G. E., Hamel J. C., Schaadt, R D.,
J. Med. Chem., 43, 953-970 (2000).
7) Some 5-thiocarbonyl oxazolidinones were synthesized at the same time that we synthesized them: Hester J. B., Nidy E. G., Perricone S. C., Poel T. J., World Intellectual Property Organization 9854161 (1998) [Chem. Abstr., 130, 38373q (1999)].
8) Goto S., Jo K., Kawakita T., Kosakai N., Mitsuhashi S., Nishino T., Ohsawa N., Tanami H., Chemotherapy, 29, 76-79 (1981).
9) Bliss C. I., Method Probit Science, 79, 38-39 (1934).

[^0]: a) Yields were calculated from the corresponding compounds 8. b) Elemental analyses were preformed on crystalline samples only. c) High-resolution mass data.

[^1]: a) Measured at $100^{\circ} \mathrm{C}$.

