Cycloartane Glycosides from Cimicifuga dahurica

Qing-Wen ZHANG,^a Wen-Cai YE,^a Wendy W.-L. HSIAO,^b Shou-Xun ZHAO,^a and Chun-Tao CHE^{*,c}

Department of Phytochemistry, China Pharmaceutical University,^a Nanjing 210009, P. R. China, Department of Biology, Hong Kong University of Science and Technology,^b Hong Kong, and School of Chinese Medicine, The Chinese University of Hong Kong,^c Hong Kong. Received March 9, 2001; accepted July 2, 2001

A new cycloartane bisdesmoside and two new trinorcycloartane glycosides, along with four known cycloartane compounds, were isolated from the rhizomes of *Cimicifuga dahurica* (Ranunculaceae). The structures of the new compounds were elucidated as 3-O- α -L-arabinopyranosyl cimigenol 15-O- β -D-glucopyranoside, 24-hydroxy-12 β -acetoxy-25,26,27-trinorcycloartan-16,23-dione 3β -O- α -L-arabinopyranoside, and 16α ,24 α -dihydroxy-12 β -acetoxy-25,26,27-trinor-16,24-cyclocycloartan-23-one 3β -O- α -L-arabinopyranoside by extensive NMR methods, FAB-MS, and hydrolysis.

Key words Cimicifuga dahurica; Ranunculaceae; cycloartane glycoside; trinorcycloartane glycoside

The rhizomes of *Cimicifuga dahurica* (TURCZ.) MAXIM., *C. heracleifolia* KoM., and *C. foetida* L. (Ranunculaceae) are used as antipyretic and analgesic remedies in Chinese medicine.¹⁾ Another species, *C. racemosa* (black cohosh), is traditionally used to treat menopausal symptoms in Europe and North America. Chemical studies have resulted in the isolation of a series of 9,19-cycloartane triterpene glycosides from *Cimicifuga species*.^{2–5)} In a previous paper,⁵⁾ we reported on two cycloartane glycosides, cimigenol 3-*O*- α -L-arabinopyranoside and 25-*O*-acetyl-cimigenol 3-*O*- α -L-arabinopyranoside, from the rhizomes of *C. dahurica*. A reinvestigation of the ethanol extract of this plant has now led to the isolation of a new bisdesmoside (**5**) and two new trinorcycloartane glycosides (**6**, 7), together with four known compounds (**1**—**4**).

Air-dried rhizomes of C. dahurica were extracted with 95% ethanol. The EtOAc-soluble fraction was subjected to silica gel column chromatography and further purified by octadecyl silica (ODS) chromatography to afford compounds 1-7. Upon acid hydrolysis, compounds 2-4 afforded cimigenol (1), 7,8-didehydrocimigenol, and 12β -hydroxylcimigenol, respectively. On the other hand, alkaline hydrolysis of **3** in 1% Na_2CO_3 afforded **2** as the major product. The sugars obtained from the aqueous hydrolysates were determined to be D-xylose (in 2 and 3), and L-arabinose (in 4) by direct comparison with authentic samples using HPLC and optical rotation measurement. Compounds 1-4 were therefore elucidated to be cimigenol (1),⁶⁾ 7,8-didehydrocimigenol 3-O- β -D-xylopyranoside (2),⁷⁾ 25-O-acetyl-7,8didehydrocimigenol 3-O- β -D-xylopyranoside (3),⁷⁾ and 12 β hydroxylcimigenol 3-O- α -L-arabinopyranoside (4)⁸⁾ by comparing their physical and spectral data [including one- and two-dimensional (1D, 2D)-NMR, FAB-MS] with the literature values.

Compound **5** was obtained as a white powder. The FAB-MS of **5** displayed a quasimolecular ion $[M+H]^+$ at m/z 777, consistent with a molecular formula of $C_{41}H_{60}O_{14}$. The NMR spectrum of **5** exhibited characteristic signals for cyclopropane methylene at δ_H 0.32 and 0.56 (each 1H, d, J=3.6 Hz) and δ_C 31.4. Acid hydrolysis of **5** yielded cimigenol (1) [high performance thin-layer chromatography (HPTLC), ¹H- and ¹³C-NMR], D-glucose, and L-arabinose (identified by direct comparison of HPLC retention times and optical rotation values with authentic samples). A compari-

Table 1. ¹H- and ¹³C-NMR Data of 5—7 (Pyridine- d_5 , δ in ppm)^{*a,b*}

5		6		7	
¹³ C	¹ H	¹³ C	¹ H	¹³ C	¹ H
33.0	1.22	32.2	1.10	32.1	1.10
	1.56		1.49		1.49
30.5	1.95	30.1	1.88	30.0	1.87
	2.36		2.33		2.28
88.9	3.48 dd (11.6, 4.4)	88.2	3.46 dd (11.6, 4.4)	88.2	3.44 dd (11.6, 4.0)
41.4		41.5		41.3	_
47.9	1.30	47.2	1.23	47.4	1.23
21.9	0.76	20.7	0.66	20.8	0.72
	1.64		1.47		1.46
26.8	1.22	26.3	0.94	26.1	0.96
	2.46		1.13		1.24
49.1	1.73	45.8	1.59	46.9	1.48
20.7	_	20.0	_	19.5	_
27.0	_	27.6	_	26.7	_
26.3	1.04	36.3	1.21	38.0	1.16
	2.03		2.66		2.95
34.2	1.56	76.4	5.49 dd (9.2, 3.2)	77.4	5.37 dd (9.0. 3.2)
	1.64				
41.5		48.8		51.1	_
47.8	_	43.8	_	48.8	_
88.3	4.37 s	50.9	2.08 d (18.0)	49.8	2.02
			2.29 d (18.0)		2.25
111.8	_	217.5	_ ``	82.7	_
59.7	1.50	61.5	2.76	63.9	2.45
20.1	1.14 s	13.8	1.35 s	13.5	1.33
31.4	0.32 d (3.6)	30.7	0.27 d (4.0)	30.4	0.30 d (4.0)
	0.56 d (3.6)		0.58 d (4.0)		0.57 d (4.0)
24.3	1.62	26.8	2.80	25.7	2.24
20.2	0.86 d (6.4)	23.3	1.26 d (6.4)	21.3	0.99 d (6.8)
38.3	0.93	43.6	2.69	45.6	2.46
	2.20		3.02 dd (17.6, 7.2)		2.56
71.6	4.71 br d (8.8)	211.0	_	210.8	_
89.8	3.53 s	69.6	4.46 d (18.4)	82.3	4.52 s
			4.53 d (18.4)		
71.0	_				_
26.1	1.23 s		_		_
27.8	1.40 s		_		_
13.1	1.28 s	19.5	0.97 s	20.4	1.39 s
26.1	1.23 s	26.0	1.29 s	25.8	1.28 s
15.8	1.05 s	15.8	0.97 s	15.6	1.00 s
		21.6	2.23 s	21.8	2.12 s
		170.6		170.4	_
107.6	4.80 d (7.6)	107.6	4.79 d (7.2)	107.5	4.77 d (7.2)
73.1	4.47	73.1	4.44 t (7.2)	73.0	4.44 dd (7.2, 7.2)
74.9	4 18	74.9	4 17 dd (7 2, 2, 8)	74 7	4.15 dd (7.2, 3.2)

a) Assignments were established by interpretation of the distortionless enchancement by polarization transfer (DEPT), DQF-COSY, HMQC, and HMBC spectra. b) J values (in Hz) are given in parentheses. Overlapped signals are reported without designating multiplicity.

69.8

67.0

4.32 br s

4.30 dd (10.8, 2.4)

3.80 d (10.8)

son of the ¹³C-NMR data of **5** with those of **1** indicated glycosylation shifts at C-3 (+11.1 ppm) and C-15 (+8.2 ppm). Long-range heteronuclear maltiple bond connectivity (HMBC) correlations were observed between 3α -H (δ 3.48) of the aglycon and C-1' (δ 107.6) of arabinose, as well as between 15-H (δ 4.37) of the aglycon and C-1" (δ 105.3) of glucose. Hence, compound **5** was elucidated to be 3-O- α -L-

4.35

4.28

3.78

4.11

4.28

4.15

4.06

4.33 4.47

4.99 d (7.2)

69.7

66.9

105.3

75.9

78.7

72.7

78.1

62.3

5'

2'

3″

4″

5″

6″

glc 1"

arabinopyranosyl cimigenol 15-O- β -D-glucopyranoside. Examination of the double quantum filtered correlation spectroscopy (DQF-COSY), ¹H-detected heteronuclear multiple quantum coherence (HMQC), and HMBC spectra led to the assignments of all proton and carbon signals as shown in Table 1.

69.6

66.9

4.30 br s

3.78 br d (10.8) 4.29 br d (10.8)

The FAB-MS of 6 displayed a quasimolecular ion

 $[M+Na]^+$ at m/z 643, consistent with the molecular formula of C₃₄H₅₂O₁₀. Acid hydrolysis of 6 yielded L-arabinose. Similar to 5, the ¹H-NMR spectrum of 6 (Table 1) exhibited signals for cyclopropane methylene at δ 0.27 and 0.58 (each 1H, d, J=4.0 Hz). A comparison of the NMR data between 6 and a known trinorcycloartane glycoside, cimicifugenoside H-3,9 suggested they possess an identical side chain structure. The proton signals at δ 1.26, 2.76, 2.80, 2.69, and 3.02 could be assigned to 21-H, 17-H, 20-H, 22-H_a, and 22-H_b, respectively, by DQF-COSY experiments. Following the above assignments, the locations of two ketonic carbons could be deduced based on HMBC data. Thus long-range correlations between signals at $\delta_{\rm C}$ 217.5 and $\delta_{\rm H}$ 2.76 (17-H), as well as between $\delta_{\rm C}$ 211.0 and $\delta_{\rm H}$ 2.69 (22-H_a)/3.02 (22-H_b) were observed, indicating that both 16-C and 23-C belong to ketonic carbons. Moreover, HMBC correlations could be demonstrated between $\delta_{\rm C}$ 211.0 (C-23) and $\delta_{\rm H}$ 4.53 (24-H_a)/4.46 (24-H_b), between the acetyl carboxyl ($\delta_{\rm C}$ 170.6) and 12 α -H $(\delta_{\rm H} 5.49)$, as well as between the anomeric carbon $(\delta_{\rm C} 107.6)$ of arabinose and 3-H ($\delta_{\rm H}$ 3.46) of the aglycone. All available evidence led to the conclusion that compound 6 is 24-hydroxy-12 β -acetoxy-25,26,27-trinorcycloartan-16,23-dione 3β -O- α -L-arabinopyranoside.

The FAB-MS of compound 7 displayed quasimolecular ions $[M+H]^+$ and $[M+Na]^+$ at m/z 621 and 643, respectively, suggesting the same molecular formula as that of 6. Analysis of the NMR data of 7 and a comparison with those of 6 indicated that the former was different from the latter by the formation of an E ring, as well as the loss of the CH₂OH group in 7. The HMBC results supported the above observation. Thus the HMBC spectrum of 7 exhibited long-range correlation signals between H-15/C-24 and H-17/C-24, suggesting that a bond is formed between C-16 and C-24.⁹ The relative stereochemistry at these two carbons was then deduced from an nuclear Overhauser effect (NOE) experiment. Upon irradiation of 18-H₃ (δ 1.33), enhancement of 24-H (δ 4.52) was observed. Such a result could only arise in the case of a D/E *cis*-ring junction and 24α -H. It followed that both the 16- and 24-hydroxyl groups must locate in an α -configuration. Thus the structure of compound 7 was established to he $16\alpha, 24\alpha$ -dihydroxy-12 β -acetoxy-25, 26, 27-trinor-16, 24cyclocycloartan-23-one 3β -O- α -L-arabinopyranoside.

It should be noted that for cimigenol derivatives such as 1—5, the biogenetic precursors are generally accepted to be hydroshengmanol and shengmanol,²⁾ whereas for compounds 6 and 7, the parental structures may be the genins of cimicifugosides H-1 and H-2.⁹⁾ These parental structures have yet to be found in *C. dahurica*.

Experimental

Melting points were measured on a Leica Galen III micro melting point apparatus and were uncorrected. Optical rotations were measured on a Pekin-Elmer 241 polarimeter. ¹H-, ¹³C- and 2D-NMR spectra were recorded on a JEOL JNM-EX400 spectrometer. FAB-MS spectra were determined in positive ion mode on a Finnigan MAT TSQ7000 spectrometer. Column chromatography was carried on silica gel (100–200 mesh) and ODS (10–40 μ m). TLC was conducted on Silica gel 60 F₂₅₄ and RP-18 F₂₅₄ S plates (Merck). HPLC was performed using an ODS column (Waters, NOVA-Pak C₁₈, 3.9×300 mm).

Plant Materials The rhizomes of C. dahurica (TURCZ.) MAXIM. were

collected in Yianbian, Jilin Province, China. The plant was authenticated by Dr. Zhe-Bin Zheng, and a voucher specimen (No. 930812) has been deposited in the herbarium of the China Pharmaceutical University.

Extraction and Isolation Air-dried rhizomes of *C. dahurica* (4.0 kg) were extracted three times with 95% EtOH for 3 h each under reflux. The EtOH extract was concentrated and fractionated by successive extraction using *n*-hexane (1000 ml×3), EtOAc (1000 ml×3), and *n*-BuOH (1000 ml×3) to afford an *n*-hexane fraction (30 g), an EtOAc fraction (110 g), and an *n*-BuOH fraction (100 g). The EtOAc fraction (70 g) was subjected to silica gel column chromatography (700 g, CHCl₃–MeOH, 99 : 1 \rightarrow 75 : 25), followed by ODS column chromatography (100 g, MeOH–H₂O, 4 : 6 \rightarrow 9 : 1), to afford 1 (50 mg), **2** (80 mg), **3** (230 mg), **4** (70 mg), **5** (210 mg), **6** (20 mg), and 7 (80 mg).

Compound 5: White powder (MeOH), mp 224—225 °C, $[\alpha]_D$ +15.9° (*c*=0.32, MeOH). IR (KBr) cm⁻¹: 3450 (OH), 3034, 1634, 1450, 1065 (C–O–C), 987. FAB-MS *m/z* 777 [M+H]⁺. *Anal.* Calcd for C₄₁H₆₀O₁₄: C, 61.19; H, 7.46. Found: C, 61.25; H, 7.41. ¹H- and ¹³C-NMR data: see Table 1.

Compound **6**: White powder (MeOH), mp 233—235 °C. Alkaline blue tetrazolium reaction on TLC was positive. IR (KBr) cm⁻¹: 3500—3300 (OH), 1735, 1731, 1710 (C=O), 1450, 1040, 992. FAB-MS *m*/*z* 621 [M+H]⁺, 643 [M+Na]⁺. *Anal.* Calcd for $C_{34}H_{52}O_{10}$: C, 65.81; H, 8.39. Found: C, 65.87; H, 8.34. ¹H- and ¹³C-NMR data: see Table 1.

Compound 7: White powder (MeOH), mp 257—259 °C, $[\alpha]_D - 102.1^{\circ}$ (*c*=0.18, MeOH). Alkaline blue tetrazolium reaction on TLC was positive. IR (KBr) cm⁻¹: 3500—3350 (OH), 1734, 1720 (C=O), 1632, 1450, 1040, 991. FAB-MS *m*/z 621 [M+H]⁺, 643 [M+Na]⁺. *Anal.* Calcd for C₃₄H₅₂O₁₀: C, 65.81; H, 8.39. Found: C, 65.86; H, 8.31. ¹H- and ¹³C-NMR data: see Table 1.

Acid Hydrolysis and Identification of Sugars in 5–7 A solution of the compound (20 mg) in 50% MeOH containing HCl (0.5 N) was heated under reflux for 3 h. The reaction mixture was neutralized with NaOH (0.5 N), diluted with H₂O, and then partitioned with EtOAc. The EtOAc solution was chromatographed on a Sephadex LH-20 column (*ca.* 40 g) to afford the aglycon, which was identified by comparison with NMR data. The water layer was concentrated, filtered, and passed through a NOVA-Pak C₁₈ cartridge (Waters), followed by repeatedly separation on HPLC [chromatographic conditions: mobile phase: MeCN–H₂O (3 : 1); flow rate: 0.6 ml/mi; detection: refractive index (RI)] to afford D-glucose (3.1 mg in 5, 16.8 mj) and L-arabinose (2.8 mg in 5, 3.3 mg in 6, and 3.5 mg in 7, 13.7 min). The optical rotation values of the monosaccharides were as follows: D-glucose, $[\alpha]_D^{25} + 53.3^{\circ}$ in 5 (lit.¹⁰⁾ + 52.7^{\circ}); L-arabinose, $[\alpha]_D^{25} + 102.1^{\circ}$ in 5, +103.8° in 6, and +103.6° in 7 (lit.¹⁰⁾ +103.0°).

Acknowledgments We thank Dr. Laura Cao (Hong Kong University of Science and Technology) for the FAB-MS data, and Dr. Zhebin Zheng for his skillful assistance in the collection and identification of plant materials.

References

- New Medical College of Jiangsu (ed.), "Dictionary of Chinese Materia Medica," Shanghai Scientific and Technological Press, Shanghai, 1977, p. 451.
- Sakurai N., Inoue T., Nagai M., Chem. Pharm. Bull., 42, 48-51 (1994).
- 3) Li C. J., Chen D. H., Xiao P. G., Acta Chim. Sin., 52, 722-725 (1994).
- Sakurai N., Nagai M., Inoue T., Yakugaku Zasshi, 95, 1354—1358 (1975).
- Ye W. C., Zhang Q. W., Che C. T., Ye T., Zhao S. X., Planta Med., 65, 770-772 (1999).
- Kusano G., Idoji M., Sogoh Y., Shibano M., Minoura K., Kusano A., Iwashita T., *Chem. Pharm. Bull.*, **42**, 1106–1110 (1994).
- Kusano A., Takahira M., Shibano M., Miyase T., Kusano G., *Chem. Pharm. Bull.*, 47, 511–516 (1999).
- Kusano A., Shibano M., Kusano G., Chem. Pharm. Bull., 43, 1167– 1170 (1995).
- Sakurai N., Koeda M., Aoki Y., Nagai M., Chem. Pharm. Bull., 43, 1475—1482 (1995).
- Schaffer R., in Pigman W., Horton D. (eds.), "The Carbohydrates. Chemistry and Biochemistry," Vol. 1A, second ed., Academic Press, New York, London, 1972, pp. 69—111.