Total Synthesis of Capsanthin Using Lewis Acid-Promoted Regio- and Stereoselective Rearrangement of Tetrasubstituted Epoxide

Yumiko Yamano and Masayoshi Ito*

Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe 658–8558, Japan.

Received September 17, 2001; accepted October 24, 2001

The synthesis of capsanthin 1 was accomplished via the C₁₅-cyclopentyl ketone 13 prepared by Lewis acid-promoted regio- and stereoselective rearrangement of the epoxide 12.

Key words capsanthin; tetrasubstituted epoxide; regio- and stereoselective rearrangement; total synthesis

Previously, we reported ¹) the first biomimetic type total synthesis of both crassostreaxanthin B 2 (Fig. 1) possessing a novel acyclic-tetrasubstituted olefinic end group and mytiloxanthin 3 containing a cyclopentyl enolic β-diketone group applying stereoselective rearrangement of tetrasubstituted epoxide.²) In these syntheses, we employed epoxides, in which substituents at the C-6³) position were alkyl groups having an oxygen functional group as shown in Chart 1.

Capsanthin 1 (Fig. 1), having a κ-end group, is a main pigment of red paprika Capsicum annuum and has become the center of attention due to its strong antioxidant activities.⁴) There has been only one report by Weedon’s group⁵) concerning its synthesis. Here, we describe the total synthesis of 1 via regio- and stereoselective rearrangement of the C₁₅-epoxide 12 (Chart 3) having a conjugated olefinic group at C-6, which was efficiently derived from the optically active (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone,⁶) It has been known that the rearrangement of the epoxide 4b⁷) (Chart 2) only provided the flanoid 5b by opening of C-6-oxygen bond of the oxirane ring (route a) and subsequent migration of the 7,8-double bond, whereas that of the epoxide 4a⁸) predominantly produced the cyclopentyl ketone 6a by cleavage of the oxirane ring at the C-5 position (route b) and successive ring contraction. It is considered that the selective cleavage of epoxide 4a at C-5 was promoted by destabilization of the cation at C-6 due to the electron deficiency of 7(β)-carbon on α,β-unsaturated carbonyl group.

Thus, the reaction of epoxides 4c–e⁹) having an olefinic group conjugated to a carbonyl group at C-6 (Chart 2) was investigated toward the synthesis of 1. As a result, treatment of the epoxide 4d with SnCl₄ was found to give predominantly the desired cyclopentyl ketone 6d (91%). On the other hand, the reaction of the epoxides 4c and 4e with SnCl₄ preferentially provided flanoids 5c (86%; 5,8-trans¹⁰):5,8-cis¹⁰) = 8:1) and 5e (53%; 5,8-trans:5,8-cis = 5:1). These results show that the direction of C–O bond cleavage in the oxirane ring depends upon both the length of conjugated double bond system and the electron-withdrawing ability of the substituent adjacent to the double bond.

In order to synthesize 1, C₁₅-epoxide 12 was prepared via stereo-controlled cross-coupling reaction of the vinylstannane 8 with the vinyl triflate 15¹¹ as shown in Chart 3. The known¹²) terminal alkyne 7, prepared (62%) from (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone,⁶) was heated at 130 °C for 20 min with an excess amount (4 eq) of Bu₃SnH in the presence of a catalytic amount of azobisisobutyronitrile (AIBN)¹³) to give stereoselectively the E-vinylstannane 8 in 88% yield. Cross-coupling reaction of 8 with 15¹¹) by combined use of tris(dibenzylidene-acetone)dipalladium (Pd₂dba₃) and AsPh₃ (ligand)¹⁴) in N,N-dimethylformamide (DMF) at 50 °C gave the all-E trienoate 9 (93%), whose hydroxy group at C-3 was protected (93%) with tert-butyldimethylsilyl (TBS) group. The resulting TBS ether 10 was then treated with m-chloroperbenzoic acid (m-CPBA) to give a mixture of the anti(α)-epoxide 11a (28%) and syn(β)-epoxide 11b (54%). Reduction of 11a with LiAlH₄ followed by MnO₂-oxidation gave the C₁₅-epoxy-aldehyde 12 in 98% yield.

Treatment of the epoxide 12 with SnCl₄ followed by desilylation yielded the regio- and stereoselective rearranged product 13¹⁵) in good yield, which was then condensed with the Wittig salt 16¹⁶) in the presence of NaOMe as a base followed by one-pot treatment with ion exchange resin, Dowex 50W-X8 (H⁺), to give a mixture of the all-E C₂₅-apocarotenal 14a (39%), the 11Z isomer 14b (28%) and 13Z one 14c (9%). Both isomers 14b and 14c could be transformed (64% from 14b; 70% from 14c) into the desired all-E one 14a by

\[\text{capsanthin} \longrightarrow \text{crossostreaxanthin B} \rightarrow \text{mytiloxanthin} \]

\[\text{route a} \]

\[\text{route b} \]

\[\text{Chart 1} \]

\[\text{Chart 2} \]

* To whom correspondence should be addressed. e-mail: m-ito@kobepharma-u.ac.jp © 2001 Pharmaceutical Society of Japan
Finally, C25-apocarotene-14a was condensed with C15-Wittig salt 17,18, which was prepared from trienoate 9 by reduction with LiAlH4 followed by treatment with PPh3·HBr, to give the condensed products (quant.), which was purified by preparative HPLC to afford all-E capsanthin (42%). Its spectral data [IR, UV-VIS, 1H- and 13C-NMR, MS, and CD (circular dichroism)] were in good agreement with those reported.5

Biological activities of capsanthin except for the antioxidant function are now extensively under investigation.

Acknowledgements We are indebted to Drs. U. Hengartner and K. Bernhard, Hoffmann-La Roche Ltd., Basel, Switzerland for chemical support. We thank Mr. H. Kuroki for technical assistance.

References and Notes

3) We have employed the numbering system used in carotenoids.
10) These epoxides were prepared from β-ionone.
15) Compound 13: 1H-NMR (CDCl3) δ: 0.85, 1.22 and 1.39 (each 3H, s), 1.52 (1H, dd, J=14.5, 3.5 Hz), 1.74 (1H, dd, J=13.5, 4.5 Hz), 1.99 (1H, dd, J=13.5, 8 Hz), 2.32 (3H, d, J=1=14.5, 8.5 Hz), 4.51 (1H, m), 6.21 (1H, br d, J=8 Hz), 6.88 (1H, d, J=15.5 Hz), 7.26 (1H, d, J=15.5 Hz), 10.18 (1H, d, J=15.5 Hz). IR (CHCl3) cm−1: 3605, 3466, 1567, 1589. HR-MS m/z: 250.1568 (Calcd for C15H22O3: 250.1566); [α]D25 = 15.2° (c=1.12 in MeOH).