Synthetic Studies of Psilocin Analogs Having Either a Formyl Group or Bromine Atom at the 5- or 7-Position¹⁾

Fumio Yamada, Mayumi Tamura, Atsuko Hasegawa, and Masanori Somei*

Faculty of Pharmaceutical Sciences, Kanazawa University, 13–1 Takara-machi, Kanazawa 920–0934, Japan. Received August 29, 2001; accepted October 2, 2001

Psilocin analogs having either a formyl group (9—12) or a bromine atom (13—18) at the 5- or 7-position have been prepared for the first time. Syntheses of 5- and 7-bromo derivatives of 4-hydroxy- (23, 24, 28) and 4-benzyloxyindole-3-carbaldehyde (19, 25, 29, 30), 4-benzyloxyindole-3-acetonitriles (20, 31), and 4-benzyloxy-N,N-dimethyltryptamine (32, 34, 35) have also been established.

Key words 5-formylpsilocin; 5-bromopsilocin; 4-benzyloxy-5-bromoindole-3-carbaldehyde; 4-benzyloxy-5-bromo-*N*,*N*-dimethyltryptamine; psilocin

Psilocin^{2—6)} (**1a**, Chart 1) and psilocybin²⁾ (**1b**) are well known indole alkaloids which cause powerful psychotomimetic effect.²⁾ With an aim to carry out their structure—activity relationship studies, several efforts have thus far been reported.^{3,4)} In 1959, Hofmann and co-workers,³⁾ and in 1985, Repke and co-workers⁴⁾ had undertaken syntheses of psilocin analogs. Their interests were focused mainly on the modification of the side chain at the 3-position of **1a**. As a result, various compounds shown in a general formula **2** were produced. However, to our knowledge, no reports are known about the modification on the benzene part of indole nucleus of **1a**.

With an expectation that suitable lead compounds for psychotic diseases, such as depression, schizophrenia, Alzheimer's disease, and so on, could be discovered among psilocin derivatives and analogs, we have created a simple preparative method⁵⁾ for **1a** in 50% overall yield as shown in Chart 1 in 1998. Since then, two groups have reported another synthetic methods for **1a**.⁶⁾

Our synthesis of **1a** consists of only five steps from indole-3-carbaldehyde (**3**) through 4-benzyloxyindole-3-carbaldehyde (**4**), -indole-3-acetonitrile (**5**), -tryptamine (**6**), and -*N*,*N*-dimethyltryptamine (**7**) as useful synthetic intermediates.

In this paper, we wish to report about the success in the preparations of analogs of 1a as shown in a general formula 8, and also bromine derivatives of 4, 5, and 7.

Syntheses of 5- and 7-Formyl-4-hydroxy-*N*,*N***-dimethyl-tryptamines from Psilocin** As psilocin analogs and key intermediates for further structural manipulations, we needed 5-formyl- (9, 5-formylpsilocin, Chart 2) and 7-formyl-4-hydroxy-*N*,*N*-dimethyltryptamine (10, 7-formylpsilocin). With 1a in hand, its Vilsmeier reaction with *N*,*N*-dimethylformamide (DMF) and phosphorus oxychloride (POCl₃) was carried out to afford 9 as an unstable oil and 10 as stable crystals in varied yields, depending on the reaction conditions. Typical results are summarized in Table 1.

To our surprise, in all cases (entries 1—4), significant amount of unreacted starting material was recovered in spite of employing excess amount of Vilsmeier reagent (5—10 mol eq). For this reason, the yields of **9** and **10** are low within the range of 17—31% and 11—13%, respectively. When the reaction temperature was raised from room temperature to 58 °C (entry 5), the yield of **10** was slightly im-

proved to 26%, while the recovery of **1a** was still observed. Another interesting finding is that the yield of **9** seems to be almost constant irrespective of the examined reaction conditions (entries 2—5).

For the structural confirmations of **9** and **10**, they were converted to 5-formyl- (**11**) and 7-formyl-1-*tert*-butoxycarbonyl-4-*tert*-butoxycarbonyloxy-*N*,*N*-dimethyltryptamine (**12**) in 78 and 66% yields, respectively, by treating with excess di-*tert*-butyl dicarbonate [(Boc)₂O] in the presence of 4-(dimethylamino)pyridine (DMAP).

Comparison of ¹H-NMR spectrum of **11** with that of **9** clearly shows that the C-7 proton signal of **11** resonated at lower magnetic field by *ca.* 1.3 ppm than that of **9**. This anisotropy effect, caused by the Boc group introduced into the 1-position, proves that **9** and **11** are 5-formyl compounds. On the other hand, no anisotropic effect on the aromatic protons was observed in the cases of **10** and **12**. Therefore, **10** and **12** are determined to be 7-formyl derivatives. Consequently, we have succeeded in the first syntheses of 5-formyl-(**9**) and 7-formylpsilocins (**10**).

Syntheses of 5- and 7-Bromo-4-hydroxy-N,N-dimethyltryptamines from Psilocin We next attempted to introduce a bromine atom directly onto the benzene part of 1a for obtaining 5-bromo-(13, 5-bromopsilocin, Chart 3) and 7bromo-4-hydroxy-N,N-dimethyltryptamines (14, 7-bromopsilocin). It is interesting to note that bromination of 1a with such reagents as Br₂ in AcOH, N-bromosuccinimide (NBS) in CHCl₃, and pyridinium bromide perbromide (Py·HBr· Br₂) in CHCl₃-Et₂O,⁷⁾ did not occur. Under forced reaction conditions, only a small amount of brominated compounds were produced. Finally, we have found that bromination with Py·HBr·Br, proceeds in moderate yield in CH₂Cl₂ containing a small amount of AcOH. As a result, an inseparable mixture of unstable 13 and 14 (in a ratio of 1:9), quite unstable 5,7-dibromo-4-hydroxytryptamine (15), and 1a were obtained in 44, 16, and 14% yields, respectively, by the reaction of 1a with Py·HBr·Br₂ (1.2 mol eq) in CH₂Cl₂-AcOH (10:1, v/v) at room temperature.

Acetylation of the mixture of 13 and 14 with Ac_2O -pyridine produced readily separable 4-acetoxy-5-bromo-N,N-dimethyltryptamine (16) and 4-acetoxy-7-bromo-N,N-dimethyltryptamine (17) as stable compounds, respectively. Acetylation of 15 with the same reagent afforded stable 18.

Based on these findings, the isolation process of products

1) TI(OCOCF₃)₃, TFA

2)
$$|_{2}$$
, Cul, DMF

3) KH. PhCH₂OH

72%
One pot

4

5

HCHO, AcOH, NaBH₄
NABH₃CN
97%

NABH₃CN
97%

NABH₄
NH₂

R⁸ = halogens, CHO
R⁹ = H, CH₂Ph, etc.

Chart 1

OH NMe₂ DMF, POCl₃
$$R^1$$
 NMe_2 NMe_2

Table 1. Vilsmeier Reaction of Psilocin (1a)

 $1a \xrightarrow{\text{DMF, POCl}_3} 9 + 10 + \text{recovery}$

Entry	POCl ₃ (mol eq)	Reaction conditions		Yield (%)		
		Temp. (°C)	Time (h)	9	10	1a
1	5	r.t.	14	17	11	47
2	5	r.t.	23	29	13	46
3	5	r.t.	72	31	11	30
4	10	r.t.	95	27	12	40
5	5	58	23	28	26	29

was improved as follows. After bromination of 1a, the reaction mixture was subjected to column chromatography. Readily isolated unstable 15 and the mixture of 13 and 14 were immediately acetylated, separately. Consequently, 16—18 were obtained from 1a in 4, 34, and 14% overall yields, respectively. Alkaline hydrolysis of 16 with LiOH in MeOH provided 5-bromopsilocin (13) but the yield was 29% because of its unstable nature. Under the same reaction conditions, hydrolysis of 17 smoothly provided 7-bromopsilocin (14) in 82% yield.

Preparations of Bromine Containing 4-Hydroxy- and 4-Benzyloxyindole-3-carbaldehydes, 4-Hydroxy-, and 4-Benzyloxyindole-3-acetonitriles Structure—activity relationship study requires a lot of compounds structurally related to the target compound. From this point of view, we next planned to prepare various 4-hydroxy- and 4-benzyloxyindole-3-carbaldehydes, and 4-hydroxy- and 4-benzyloxyindole-3-acetonitriles, having a bromine atom either at 5-or 7-Position (Chart 4).

Making use of synthetic intermediates involved in the pathway to 1a (Chart 1), we first examined bromination of 4

with Py·HBr·Br₂ in CHCl₃–Et₂O (1:1, v/v).⁷⁾ Regioselective introduction of a bromine atom into the 7-position was observed to give 4-benzyloxy-7-bromoindole-3-carbaldehyde (19) in 62% yield. Under similar reaction conditions, 5 provided a 63% yield of 4-benzyloxy-7-bromoindole-3-acetonitrile (20). The compound 20 was alternatively obtained in 74% yield directly from 19 together with a 17% yield of N-(4-benzyloxy-7-bromoindol-3-yl)methylformamide (21), by employing our reaction⁸⁾ using NaCN in the presence of NaBH₄ in NH₂CHO–MeOH.

Bromination of **22**, prepared by catalytic hydrogenation of **4** over 10% Pd–C in 76% yield, with Py·HBr·Br₂ in CHCl₃–tetrahydrofuran (THF) $(1:1, v/v)^9$ provided 5-bromo- (**23**) and 7-bromo-4-hydroxyindole-3-carbaldehyde (**24**) in 10 and 84% yields, respectively. Treatments of **19** and **24** with an excess amount of benzyl bromide and K₂CO₃ in DMF afforded the same 1-benzyl-4-benzyloxy-7-bromoindole-3-carbaldehyde (**25**) in 98 and 93% yields, respectively.

In order to attain regioselective bromination at the 5-position, an attempt was made by putting a sterically bulky group onto the 1-position. The reaction of **22** with (Boc)₂O (1 mol eq) in CH₂Cl₂ in the presence of Et₃N and *N*,*N*-dimethylaminopyridine (DMAP) gave 1-*tert*-butoxycarbonyl-4-hydroxyindole-3-carbaldehyde (**26**) in 97% yield. The introduction of Boc group into the 1-position instead of the phenolic oxygen is confirmed by the following reactions; 1) treatment of **26** with benzyl bromide and KO-*tert*-Bu in DMF afforded **27** in 63% yield, 2) subsequent hydrolysis of **27** with NaOH in MeOH produced **4** in a quantitative yield.

As the structure of **26** was established, its bromination was examined with $Py \cdot HBr \cdot Br_2$ in $CHCl_3$ –THF (1:1, v/v). As expected, 5-bromo-1-*tert*-butoxycarbonyl-4-hydroxyindole-3-carbaldehyde (**28**) was produced as a sole product in 85% yield. Removal of Boc group in **28** with NaOH in MeOH

94 Vol. 50, No. 1

gave a 93% yield of 23, which was identical with the sample obtained by bromination of 22. Comparison of ¹H-NMR spectra of 23 and 28 clearly shows an anisotropy effect of the Boc group on the C-7 proton by about 0.6 ppm, proving that these are 5-brominated compounds.

Further structural confirmations were obtained in the process of preparing 4-benzyloxy-5-bromoindole-3-carbaldehyde (30) and -acetonitrile (31) from 28. Thus, the compound 28 was converted to 4-benzyloxy-5-bromo-1-*tert*-butoxycarbonylindole-3-carbaldehyde (29) in 98% yield by the reaction with benzyl bromide and K₂CO₃. Subsequent hydrolysis of 29 with NaOH in MeOH afforded 30 in 97% yield. Treatment of 30 with NaCN in the presence of NaBH₄ in NH₂CHO–MeOH⁸⁾ afforded 31 in 97% yield.

Bromine Containing Derivatives of 7 and Another Synthetic Approach to 5- and 7-Bromopsilocin With the compound 7 in hand, we next tried to produce its bromine

containing derivatives, and to find another synthetic approach to 5- (13) and 7-bromopsilocin (14) (Chart 5).

Bromination of 7 with $Py \cdot HBr \cdot Br_2$ in $CHCl_3-Et_2O$ (1:1, v/v) provided 4-benzyloxy-7-bromo-N,N-dimethyltryptamine (32) in 31% yield. Attempts to improve the yield were made by employing Br_2 in AcOH and NBS in $CHCl_3$ under various reaction conditions *in vain*. Use of the HBr salt of 7 as a substrate was unsuccessful, either, under the same reaction conditions. Subsequent catalytic hydrogenation of 32 over 10% Pd–C in MeOH completely removed the bromine atom and produced 1a in almost quantitative yield. However, BBr_3 was found to be the reagent of choice for debenzylation. As a result, 7-bromopsilocin (14) was obtained in 41% yield.

The compound **32** could also be prepared in an alternative route. Reduction of **20** with LiAlH₄ in Et₂O afforded 4-benzyloxy-7-bromotryptamine (**33**) in 86% yield together with a 11% yield of **6**.⁵⁾ Subsequent dimethylation of **33** with

formaldehyde and $NaBH_3CN$ in $AcOH^{10)}$ furnished 32 in 91% yield.

On the other hand, treatment of 7 with (Boc)₂O in CH₂Cl₂ in the presence of DMAP afforded 4-benzyloxy-1-*tert*-butoxycarbonyl-*N*,*N*-dimethyltryptamine (**36**) in 96% yield. Debenzylation of **36** by the catalytic hydrogenation over 10% Pd–C in MeOH produced 1-*tert*-butoxycarbonyl-*N*,*N*-dimethyl-4-hydroxytryptamine (**37**) in 93% yield. Bromination of **37** with Py·HBr·Br₂ in CHCl₃–Et₂O (1:1, v/v) proceeded regioselectively to give 5-bromo-1-*tert*-butoxycarbonyl-4-hydroxy-*N*,*N*-dimethyltryptamine (**38**) in 87% yield, just as observed in the bromination of **26**. Finally, deprotection of the Boc group of **38** with CF₃COOH furnished 5-bromopsilocin (**13**) in 97% yield. Thus, preparation of relatively unstable **13** by this route is far better than the direct bromination of **1a** as described above.

Both N- and O-protected bromopsilocin would be a good synthetic intermediate for future use. So, we prepared 4-ben-zyloxy-7-bromo-1-*tert*-butoxycarbonyl-N,N-dimethyltryptamine (34) in 83% yield by treating 32 with (Boc)₂O in CH₂Cl₂ in the presence of DMAP. The other isomer, 4-ben-zyloxy-5-bromo-1-*tert*-butoxycarbonyl-N,N-dimethyltryptamine (35) was obtained in 43% yield by benzylation of 38 using KH and benzylbromide in DMF.

In conclusion, we have succeeded for the first time in developing synthetic methods for psilocin analogs having either a formyl group (9—12) or bromine atom (13—18) at the 5-or 7-position. Preparations of 5- and 7-bromo derivatives of 4-hydroxy- (23, 24, 28) and 4-benzyloxyindole-3-carbaldehydes (19, 25, 29, 30), 4-benzyloxyindole-3-acetonitriles (20, 31), and 4-benzyloxy-*N*,*N*-dimethyltryptamines (32, 34, 35) have also been established. These compounds would be suitable for further manipulations. Biological evaluations of new compounds described in this paper are in progress.

Experimental

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were determined with a Shimadzu

IR-420 or Horiba FT-720 spectrophotometer, and 1 H-NMR spectra with a JEOL GSX-500 spectrometer, with tetramethylsilane as an internal standard. MS spectra were recorded on a JEOL SX-102A or JEOL JMS-GCmate spectrometer. Column chromatography was performed on silica gel (SiO₂, 100—200 mesh, from Kanto Chemical Co., Inc.). Preparative thin layer chromatography (p-TLC) was performed on Merck Kiesel-gel GF₂₅₄ (type 60) (SiO₃).

5-Formyl-4-hydroxy-N,N-dimethyltryptamine (9) and 7-Formyl-4-hydroxy-N,N-dimethyltryptamine (10) from Psilocin (1a) Entry 1: Anhydrous DMF (1 ml) was added to an ice-cooled POCl₃ (91.0 mg, 0.59 mmol) and the mixture was stirred for 10 min at room temperature. To the resulting viscous solution was added a solution of 1a (22.4 mg, 0.11 mmol) in anhydrous DMF (2 ml) and stirring was continued for 14 h at room temperature. The reaction mixture was made basic by adding 2 N NaOH at 0 °C and the whole was stirred at room temperature for 1 h. After adjusting pH to 7—8 with 1 N HCl, the whole was extracted with CHCl₂-MeOH (95:5, v/v). The extract was washed with brine, dried over Na2SO4, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃-MeOH-28% aq. NH₃ (46:5:0.5, v/v) to give 10 (2.8 mg, 11%), unreacted 1a (10.6 mg, 47%), and 9 (4.2 mg, 17%) in the order of elution. 9: Unstable yellow oil. IR (film): 3200, 1628 cm⁻¹. ¹H-NMR (CD₃OD) δ : 2.43 (6H, s), 2.82 (2H, t, J=7.5 Hz), 3.10 (2H, t, J=7.5 Hz), 6.89 (1H, d, J= 8.5 Hz), 6.99 (1H, s), 7.28 (1H, d, J=8.5 Hz), 9.88 (1H, s). High-resolution MS m/z: Calcd for $C_{13}H_{16}N_2O_2$: 232.1212. Found: 232.1213. **10**: mp 220.5-222.5 °C (colorless prisms, recrystallized from AcOEt-hexane). IR (KBr): 3380, 1634, 1583 cm⁻¹. ¹H-NMR (CD₃OD) δ : 2.62 (6H, s), 3.04— 3.09 (2H, m), 3.10 - 3.15 (2H, m), 6.38 (1H, d, J=8.3 Hz), 6.98 (1H, s),7.43 (1H, d, J=8.3 Hz), 9.59 (1H, s). MS m/z: 232 (M⁺). Anal. Calcd for C₁₃H₁₆N₂O₂: C, 67.22; H, 6.94; N, 12.06. Found: C, 67.30; H, 6.96; N,

Entry 2: Anhydrous DMF (1 ml) was added to an ice-cooled POCl $_3$ (95.6 mg, 0.62 mmol) and the mixture was stirred for 10 min at room temperature. To the resulting viscous solution was added a solution of $\bf 1a$ (19.0 mg, 0.093 mmol) in anhydrous DMF (2 ml) and stirring was continued for 23 h at room temperature. After work-up and purification as described in entry 1, $\bf 10$ (2.9 mg, 13%), unreacted $\bf 1a$ (8.8 mg, 46%), and $\bf 9$ (6.2 mg, 29%) were obtained in the order of elution.

Entry 3: Anhydrous DMF (1 ml) was added to an ice-cooled POCl $_3$ (102.4 mg, 0.67 mmol) and the mixture was stirred for 10 min at room temperature. To the resulting viscous solution was added a solution of 1a (21.4 mg, 0.11 mmol) in anhydrous DMF (2 ml) and stirring was continued for 72 h at room temperature. After work-up and purification as described in entry 1, 10 (2.6 mg, 11%), unreacted 1a (6.4 mg, 30%), and 9 (7.5 mg, 31%) were obtained in the order of elution.

Entry 4: Anhydrous DMF (1 ml) was added to an ice-cooled POCl₃

96 Vol. 50, No. 1

(170.8 mg, 1.11 mmol) and the mixture was stirred for 10 min at room temperature. To the resulting viscous solution was added a solution of **1a** (21.2 mg, 0.10 mmol) in anhydrous DMF (2 ml) and stirring was continued for 95 h at room temperature. After work-up and purification as described in entry 1, **10** (3.0 mg, 12%), unreacted **1a** (8.5 mg, 40%), and **9** (6.4 mg, 27%) were obtained in the order of clution

Entry 5: Anhydrous DMF (1 ml) was added to an ice-cooled $POCl_3$ (96.4 mg, 0.62 mmol) and the mixture was stirred for 10 min at room temperature. To the resulting viscous solution was added a solution of 1a (21.6 mg, 0.11 mmol) in anhydrous DMF (2 ml) and stirring was continued for 23 h at 58 °C. After work-up and purification as described in entry 1, 10 (6.4 mg, 26%), unreacted 1a (6.2 mg, 29%), and 9 (6.8 mg, 28%) were obtained in the order of elution.

1-tert-Butoxycarbonyl-4-tert-butoxycarbonyloxy-5-formyl-N,N-dimethyltryptamine (11) from 9 A solution of 9 (10.4 mg, 0.045 mmol), DMAP (5.6 mg, 0.046 mmol), and Boc₂O (0.04 ml, 0.17 mmol) in CH₂Cl₂ (1 ml) was stirred for 18 h at room temperature. The mixture was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃-MeOH (95:5, v/v) to give 11 (15.1 mg, 78%). 11: mp 109—111 °C (colorless prisms, recrystallized from hexane). IR (KBr): 1751, 1734, 1690, 1608 cm⁻¹. ¹H-NMR (CD₃OD) δ: 1.57 (9H, s), 1.68 (9H, s), 2.38 (6H, s), 2.72 (2H, t, J=7.9 Hz), 2.94 (2H, t, J=7.9 Hz), 7.56 (1H, s), 7.81 (1H, d, J=8.7 Hz), 8.21 (1H, d, J=8.7 Hz), 10.05 (1H, s). MS m/z: 432 (M⁺). Anal. Calcd for C₂₃H₃₂N₂O₆: C, 63.87; H, 7.46; N, 6.48. Found: C, 63.79: H, 7.58: N, 6.42.

1-tert-Butoxycarbonyl-4-tert-butoxycarbonyloxy-7-formyl-*N*,*N*-**dimethyltryptamine (12) from 10** A solution of **10** (6.0 mg, 0.026 mmol), DMAP (3.0 mg, 0.025 mmol), and Boc₂O (0.05 ml, 0.22 mmol) in CH₂Cl₂ (1 ml) was stirred for 18 h at room temperature. The mixture was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃–MeOH (95:5, v/v) to give **12** (7.4 mg, 66%). **12**: Colorless oil. IR (film): 1758, 1735, 1689 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.57 (9H, s), 1.62 (9H, s), 2.36 (6H, s), 2.66 (2H, t, J=7.8 Hz), 2.93 (2H, t, J=7.8 Hz), 7.19 (1H, d, J=8.3 Hz), 7.39 (1H, s), 7.75 (1H, d, J=8.3 Hz), 10.44 (1H, s). High-resolution MS m/z: Calcd for C₂₃H₃₂N₂O₆: 432.2260. Found: 432.2261.

4-Acetoxy-5-bromo-N,N-dimethyltryptamine (16), 4-Acetoxy-7-bromo-N,N-dimethyltryptamine (17), and 4-Acetoxy-5,7-dibromo-N,N-dimethyltryptamine (18) from 1a Py·HBr·Br₂¹¹⁾ (42.2 mg, 0.13 mmol) was added to a solution of 1a (22.4 mg, 0.11 mmol) in CH₂Cl₂ (3 ml) and AcOH (0.3 ml), and the mixture was stirred at room temperature for 5 h. After evaporation of the solvent under reduced pressure, the residue was column-chromatographed repeatedly on SiO₂ with CHCl₃-MeOH-28% aq. NH₃ (46:5:0.5, v/v) to give quite unstable 15 (6.3 mg, 16%), a mixture (13.8 mg, 44%) of unstable 13 and 14 (in a ratio of 1:9, calculated by ¹H-NMR) and unreacted 1a (3.1 mg, 14%) in the order of elution. Compound 15 was so unstable that spectral data of pure sample were not obtained. Ac₂O (1 ml) was added to a solution of the mixture of 13 and 14 (13.8 mg) in pyridine (2 ml), and the mixture was stirred at room temperature for 23 h. After evaporation of the solvent under reduced pressure, the residue was column-chromatographed repeatedly on SiO2 with CHCl3-MeOH-28% aq. NH₃ (46:5:0.5, v/v) to give 17 (12.0 mg, 34% from 1a) and 16 (1.3 mg, 4% from 1a) in the order of elution. 16: Colorless oil. IR (film): 3390, 1763 cm $^{-1}$. ¹H-NMR (CDCl₃) δ : 2.31 (6H, s), 2.45 (3H, s), 2.59 (2H, t, J=7.7 Hz), 2.85 (2H, t, J=7.7 Hz), 6.93 (1H, dt, J=2.2, 1.1 Hz, collapsed to s on addition of D_2O), 7.04 (1H, d, J=8.5 Hz), 7.28 (1H, d, J=8.5 Hz), 8.30 (1H, br s, disappeared on addition of D_2O). High-resolution MS m/z: Calcd for C₁₄H₁₇⁷⁹BrN₂O₂: 324.0473. Found: 324.0463. Calcd for C₁₄H₁₇⁸¹BrN₂O₂: 326.0453. Found: 326.0458. 17: Colorless oil. IR (film): 3367, 1763 cm ¹H-NMR (CDCl₂) δ : 2.31 (6H, s), 2.40 (3H, s), 2.59 (2H, t, J=7.9 Hz), 2.90 (2H, t, J=7.9 Hz), 6.72 (1H, d, J=8.3 Hz), 7.04 (1H, dt, J=2.2, 1.1 Hz, collapsed to s on addition of D_2O), 7.28 (1H, d, J=8.3 Hz), 8.26 (1H, br s, disappeared on addition of D_2O). High-resolution MS m/z: Calcd for $C_{14}H_{17}^{79}BrN_2O_2$: 324.0473. Found: 324.0470. Calcd for $C_{14}H_{17}^{81}BrN_2O_2$: 326.0453. Found: 326.0444. Ac₂O (0.5 ml) was added to a solution of 15 (6.3 mg, 0.017 mmol) in pyridine (1 ml), and the mixture was stirred at room temperature for 20 h. After evaporation of the solvent under reduced pressure, the residue was column-chromatographed repeatedly on SiO2 with CHCl₃-MeOH-28% aq. NH₃ (46:5:0.5, v/v) to give **18** (6.1 mg, 14% from **1a**). **18**: Colorless oil. IR (film): 3359, 1759 cm⁻¹. 1 H-NMR (CDCl₃) δ : 2.30 (6H, s), 2.45 (3H, s), 2.57 (2H, t, J=7.8 Hz), 2.84 (2H, t, J=7.8 Hz), 7.05 (1H, br d, J=2.2 Hz, collapsed to s on addition of D_2O), 7.50 (1H, s), 8.34 (1H, brs, disappeared on addition of D₂O). High-resolution MS m/z: Calcd for $C_{14}H_{16}^{79}Br_2N_2O_2$: 401.9579. Found: 401.9566. Calcd for $C_{14}H_{16}^{79}Br^{81}BrN_2O_2$: 403.9558. Found: 403.9559. $C_{14}H_{16}^{81}Br_2N_2O_2$: 405.9537. Found: 405.9543

5-Bromo-4-hydroxy-N,N-dimethyltryptamine (13) from 16 LiOH (11.5 mg, 0.48 mmol) was added to a solution of 16 (12.8 mg, 0.039 mmol) in MeOH (2 ml), and the mixture was stirred at room temperature for 2 h. After addition of AcOH (0.1 ml) to the reaction mixture, the solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃-MeOH- 28% aq. NH₃ (46:5:0.5, v/v) to give unstable 13 (3.7 mg, 29%) and unreacted 16 (3.3 mg, 22%) in the order of elution. 13 · 1/2AcOEt: mp 139—141 °C (dec., colorless prisms, recrystallized from AcOEt). IR (KBr): 3230, 1726, 1471, 1439 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.26 (3/2H, t, J=7.1 Hz), 1.60 (1H, br s, disappeared on addition of D₂O), 2.04 (3/2H, s), 2.41 (6H, s), 2.70—2.73 (2H, m), 2.92—2.95 (2H, m), 4.12 (1H, q, J=7.1 Hz), 6.73 (1H, d, J=8.6 Hz), 6.83 (1H, brd, J=2.2 Hz, collapsed to s on addition of D₂O), 7.26 (1H, d, J=8.6 Hz), 7.90 (1H, br s, disappeared on addition of D_2O). MS m/z: 282 and 284 ($M^{+\ 79}Br$, ⁸¹Br). Anal. Calcd for C₁₂H₁₅BrN₂O · 1/2C₄H₈O₂: C, 51.39; H, 5.85; N, 8.56. Found: C, 51.17; H, 5.79; N, 8.40.

7-Bromo-4-hydroxy-*N*,*N*-dimethyltryptamine (14) from 17 LiOH (10.8 mg, 0.45 mmol) was added to a solution of 17 (12.8 mg, 0.039 mmol) in MeOH (2 ml), and the mixture was stirred at room temperature for 10 min. After addition of AcOH (0.1 ml) to the reaction mixture, the solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃–MeOH– 28% aq. NH₃ (46:5:0.5, v/v) to give 14 (9.2 mg, 82%). 14: mp 148—150 °C (dec., colorless prisms, recrystallized from AcOEt). IR (KBr): 3246, 1498, 1342, 833 cm⁻¹. ¹H-NMR (CD₃OD) δ: 2.36 (6H, s), 2.74 (2H, t, J=6.7 Hz), 3.00 (2H, t, J=6.7 Hz), 6.28 (1H, d, J=8.1 Hz), 6.95 (1H, s), 7.00 (1H, d, J=8.1 Hz). MS m/z: 282 and 284 (M^{+ 79}B, ⁸¹Br). *Anal*. Calcd for C₁₂H₁₅BrN₂O: C, 50.90; H, 5.34; N, 9.89. Found: C, 51.00; H, 5.34; N, 9.62.

4-Benzyloxy-7-bromoindole-3-carbaldehyde (19) from 4-Benzyloxyindole-3-carbaldehyde (4) Py·HBr·Br₂ (57.4 mg, 0.18 mmol) was added to a solution of **4** (38.8 mg, 0.16 mmol) in CHCl₃–Et₂O (1:1, v/v, 16 ml), and the mixture was stirred at room temperature for 5 h. The reaction mixture was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ to give **19** (31.4 mg, 62%) from AcOEt–hexane (1:3, v/v) eluent and unreacted **4** (7.8 mg, 20%) from AcOEt–hexane (1:1, v/v) eluent. **19**: mp 186—188 °C (colorless needles, recrystallized from MeOH). IR (KBr): 3300, 1635 cm⁻¹. ¹H-NMR (CDCl₃) δ : 5.25 (2H, s), 6.70 (1H, d, J=8.3 Hz), 7.31 (1H, d, J=8.3 Hz), 7.33—7.43 (3H, m), 7.45—7.49 (2H, m), 7.97 (1H, d, J=2.9 Hz, collapsed to s on addition of D₂O), 8.93 (1H, brs, disappeared on addition of D₂O), 10.48 (1H, s). MS m/z: 329 and 331 (M⁺ ⁷⁹Br, ⁸¹Br). *Anal.* Calcd for C₁₆H₁₂BrNO₂: C, 58.20; H, 3.66; N, 4.24. Found: C, 58.19; H, 3.63; N, 4.15.

4-Benzyloxy-7-bromoindole-3-acetonitrile (20) from 4-Benzyloxyindole-3-acetonitrile (5) Py·HBr·Br₂ (53.8 mg, 0.17 mmol) was added to a solution of **5** (41.4 mg, 0.16 mmol) in CHCl₃–Et₂O (1:1, v/v, 8 ml), and the mixture was stirred at room temperature for 4h. The reaction mixture was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with AcOEt–hexane (1:4, v/v) to give **20** (33.7 mg, 63%) and unreacted **5** (6.4 mg, 15%). **20**: mp 150—151 °C (colorless leaves, recrystallized from Et₂O–hexane). IR (KBr): 3350, 2260, 1616 cm⁻¹. ¹H-NMR (CDCl₃) δ : 3.99 (2H, d, J=1.0 Hz), 5.16 (2H, s), 6.49 (1H, d, J=8.3 Hz), 7.19 (1H, dt, J=2.2, 1.0 Hz, collapsed to br s on addition of D₂O), 7.23 (1H, d, J=8.3 Hz), 7.33—7.44 (3H, m), 7.45—7.49 (2H, m), 8.27 (1H, br s, disappeared on addition of D₂O). MS m/z: 340 and 342 (M⁺ ⁷⁹Br, ⁸¹Br). *Anal.* Calcd for C₁₇H₁₃BrN₂O: C, 59.84; H, 3.84; N, 8.21. Found: C, 60.12; H, 3.79; N, 8.10.

Compound 20 and N-(4-Benzyloxy-7-bromoindol-3-yl)methylformamide (21) from 19 NaBH $_4$ (3.5 mg, 0.092 mmol) was added to a solution of 19 (18.6 mg, 0.056 mmol) in NH $_2$ CHO–MeOH (1:1, v/v, 4 ml), and the mixture was stirred for 0.5 h. To the reaction mixture was added NaCN (30.2 mg, 0.62 mmol) and the whole was refluxed on oil bath at 100 °C for 3 h with stirring. After cooling to room temperature, brine was added and the whole was extracted with CHCl $_3$. The extract was washed with brine, dried over Na $_2$ SO $_4$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO $_2$ to give 20 (14.2 mg, 74%) from CHCl $_3$ eluent and 21 (3.4 mg, 17%) from CHCl $_3$ –MeOH (95:5, v/v) eluent. 21: mp 182—183 °C (colorless needles, recrystallized from AcOEt). IR (KBr): 3290, 3230, 1639 cm $^{-1}$. 1 H-NMR (CDCl $_3$, rotational isomers existed) δ : 4.53 (2/7H, d, J=6.4 Hz), 4.58 (12/7H, d, J=6.1 Hz), 5.17 (2/7H, s), 5.20 (12/7H, s), 5.99 (1/7H, br s, disappeared on addition of D $_2$ O), 6.22 (6/7H, br s, disappeared on addition of D $_2$ O), 6.56

(6/7H, d, J=8.3 Hz), 7.05 (1/7H, d, J=2.1 Hz), 7.14 (6/7H, d, J=2.4 Hz), 7.24 (1/7H, d, J=8.3 Hz), 7.25 (6/7H, d, J=8.3 Hz), 7.34—7.49 (5H, m), 7.92 (6/7H, d, J=1.7 Hz, collapsed to s on addition of D₂O), 8.02 (1/7H, d, J=12.0 Hz, collapsed to s on addition of D₂O), 8.24 (1H, br s, disappeared on addition of D₂O). MS m/z: 358 and 360 (M^{+ 79}Br, ⁸¹Br). *Anal.* Calcd for C₁₇H₁₅BrN₂O₂: C, 56.84; H, 4.21; N, 7.80. Found: C, 56.99; H, 4.18; N, 7.58.

4-Hydroxyindole-3-carbaldehyde (22) from 4 A suspension of **4** (187.1 mg, 0.75 mmol) and 10% Pd–C (82.0 mg) in MeOH (15 ml) was stirred at room temperature for 1 h under $\rm H_2$ atmosphere. The reaction mixture was filtered through $\rm SiO_2$ to remove Pd–C and the filtrate was evaporated under reduced pressure to leave a crystalline solid, which was recrystallized from CHCl₃–MeOH to give **22** (70.6 mg). The mother liquor was purified by p-TLC on $\rm SiO_2$ with CH₂Cl₂–MeOH (97:3, v/v) as a developing solvent. Extraction of the band having an $\it Rf$ value of 0.42–0.31 with CH₂Cl₂–MeOH (95:5, v/v) gave **22** (20.4 mg). The total yield of **22** was 91.0 mg (76%). mp, $\rm ^1H$ –NMR, and IR spectra of **22** were identical with those of the authentic sample **22** reported by us. $\rm ^{12}$

5-Bromo-4-hydroxyindole-3-carbaldehyde (23) and 7-Bromo-4-hydroxyindole-3-carbaldehyde (24) from 22 Py·HBr·Br₂ (172.4 mg, 0.54 mmol) was added to a solution of 22 (77.6 mg, 0.48 mmol) in CHCl₃-THF (1:1, v/v, 40 ml), and the mixture was stirred for 1 h at room temperature. The reaction mixture was washed with brine, dried over Na2SO4, and evaporated under reduced pressure to leave a crystalline solid, which was columnchromatographed on SiO₂ with AcOEt-hexane (1:1, v/v) to give 24 (96.7 mg, 84%), unreacted 22 (6.8 mg, 6%), and 23 (11.5 mg, 10%) in the order of elution. 23: mp 224—226 °C (dec., pale yellow needles, recrystallized from MeOH). IR (KBr): 3300, 1600 cm⁻¹. ¹H-NMR (Dimethylsulfoxide (DMSO- d_6)) δ : 6.94 (1H, d, J=8.5 Hz), 7.36 (1H, d, J=8.5 Hz), 8.43 (1H, s), 9.65 (1H, s), 11.40 (1H, s, disappeared on addition of D₂O), 12.54 (1H, br s, disappeared on addition of D_2O). MS m/z: 239 and 241 ($M^{+79}Br$, ^{81}Br). Anal. Calcd for C₉H₆BrNO₂: C, 45.03; H, 2.52; N, 5.83. Found: C, 45.11; H, 2.52; N, 5.63. 24: mp 212-214 °C (dec., pale yellow needles, recrystallized from MeOH). IR (KBr): 3220, $1618 \, \text{cm}^{-1}$. ¹H-NMR (DMSO- d_6) δ : 6.53 (1H, d, J=8.4 Hz), 7.32 (1H, d, J=8.4 Hz), 8.43 (1H, s), 9.70 (1H, s), 10.64 (1H, s, disappeared on addition of D₂O), 12.57 (1H, br s, disappeared on addition of D_2O). MS m/z: 239 and 241 (M^{+ 79}Br, ⁸¹Br). Anal. Calcd for C₀H₆BrNO₂: C, 45.03; H, 2.52; N, 5.83. Found: C, 45.13; H, 2.50; N, 5.55.

1-Benzyl-4-benzyloxy-7-bromoindole-3-carbaldehyde (25) from 19 A solution of benzyl bromide (28.3 mg, 0.17 mmol) in DMF (1 ml) was added to a suspension of 19 (20.0 mg, 0.061 mmol) and K_2CO_3 (27.2 mg, 0.20 mmol) in DMF (1 ml), and the mixture was stirred at room temperature for 24 h. After addition of brine, the whole was extracted with AcOEt. The extract was washed with brine, dried over Na_2SO_4 , and evaporated under reduced pressure to leave a crystalline solid, which was column-chromatographed on SiO_2 with CHCl₃-hexane (7:3, v/v) to give 25 (25.0 mg, 98%). 25: mp 171—172 °C (colorless needles, recrystallized from AcOEt). IR (KBr): 1662 cm⁻¹. 1 H-NMR (CDCl₃) δ: 5.24 (2H, s), 5.84 (2H, s), 6.67 (1H, d, J=8.5 Hz), 7.04—7.08 (2H, m), 7.26—7.43 (7H, m), 7.44—7.48 (2H, m), 7.80 (1H, s), 10.47 (1H, s). MS m/z: 419 and 421 ($^{\rm M}$ - $^{\rm P}$ - $^{\rm B}$ r, $^{\rm 8}$ -Br). Anal. Calcd for C_2 3H₁₈BrNO₂: C, 65.73; H, 4.32; N, 3.33. Found: C, 65.72; H, 4.26; N, 3.19.

Compound 25 from 24 A solution of benzyl bromide (64.1 mg, 0.38 mmol) in DMF (1 ml) was added to a suspension of **24** (16.0 mg, 0.067 mmol) and K_2CO_3 (29.8 mg, 0.22 mmol) in DMF (1 ml), and the mixture was stirred at room temperature for 24 h. After addition of brine, the whole was extracted with AcOEt. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a crystalline solid, which was column-chromatographed on SiO₂ with CHCl₃-hexane (1:1, v/v) to give **25** (26.1 mg, 93%).

1-tert-Butoxycarbonyl-4-hydroxyindole-3-carbaldehyde (26) from 22 DMAP (14.3 mg, 0.12 mmol) and a solution of Boc₂O (134.8 mg, 0.62 mmol) in CH₂Cl₂ (2 ml) were successively added to a solution of **22** (98.0 mg, 0.61 mmol) in CH₂Cl₂–Et₃N (9:1, v/v, 10 ml), and the mixture was stirred at room temperature for 2 h. The reaction mixture was evaporated under reduced pressure to leave a crystalline solid, which was column-chromatographed on SiO₂ with CHCl₃–hexane (1:1, v/v) to give **26** (153.3 mg, 97%). **26**: mp 169—171 °C (pale yellow needles, recrystallized from AcOEt). IR (KBr): 1756, 1637 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.71 (9H, s), 6.84 (1H, dd, J=8.1, 0.7 Hz), 7.31 (1H, dd, J=8.3, 8.1 Hz), 7.61 (1H, d, J=8.3 Hz), 8.25 (1H, s), 9.76 (1H, s), 10.13 (1H, s, disappeared on addition of D₂O). MS m/z: 261 (M⁺). Anal. Calcd for C₁₄H₁₅NO₄: C, 64.36; H, 5.79; N, 5.36. Found: C, 64.20; H, 5.80; N, 5.19.

4-Benzyloxy-1-tert-butoxycarbonylindole-3-carbaldehyde (27) from 26

KO-*tert*-Bu (17.3 mg, 0.15 mmol) was added to a solution of **26** (29.1 mg, 0.11 mmol) in anhydrous DMF (2 ml) at 0 °C, and the mixture was stirred at 0 °C for 10 min. To this orange solution was added a solution of benzyl bromide (18.8 mg, 0.11 mmol) in anhydrous DMF (1 ml) and stirring was continued at room temperature for 1 h. Saturated NH₄Cl solution was added at 0 °C and the whole was extracted with AcOEt. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a crystalline solid, which was column-chromatographed on SiO₂ with CHCl₃ to give **27** (24.7 mg, 63%). **27**: mp 171—173 °C (colorless prisms, recrystallized from AcOEt). IR (KBr): 1730, 1665 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.67 (9H, s), 5.26 (2H, s), 6.89 (1H, d, J=8.3 Hz), 7.30 (1H, t, J=8.3 Hz), 7.32—7.42 (3H, m), 7.44—7.48 (2H, m), 7.87 (1H, d, J=8.3 Hz), 8.24 (1H, s), 10.54 (1H, s). MS m/z: 351 (M⁺). *Anal*. Calcd for C₂₁H₂₁NO₄: C, 71.78; H, 6.02; N, 3.99. Found: C, 71.70; H, 6.08; N, 3.89.

Compound 4 from 27 A solution of NaOH (17.9 mg, 0.45 mmol) in MeOH (0.6 ml) was added to a solution of **27** (26.4 mg, 0.075 mmol) in MeOH (2 ml), and the mixture was stirred for 2 h at room temperature. Saturated NH₄Cl solution was added and the whole was extracted with AcOEt. The extract was washed with brine, dried over Na_2SO_4 , and evaporated under reduced pressure to leave a crystalline solid, which was column-chromatographed on SiO_2 with CHCl₃–MeOH (99:1, v/v) to give **4**⁵⁾ (18.8 mg, 100%).

5-Bromo-1-*tert***-butoxycarbonyl-4-hydroxyindole-3-carbaldehyde** (**28**) **from 26** Py·HBr·Br₂ (119.6 mg, 0.37 mmol) was added to a solution of **26** (84.7 mg, 0.32 mmol) in CHCl₃–THF (1:1, v/v, 8 ml), and the mixture was stirred at room temperature for 22 h. The reaction mixture was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a crystalline solid, which was recrystallized from AcOEt to give **28** (70.0 mg) as pale yellow needles. The mother liquor was column-chromatographed on SiO₂ with AcOEt–hexane (1:4, v/v) to give **28** (23.3 mg). The total yield of **28** was 93.3 mg (85%). **28**: mp 236—238 °C (dec.). IR (KBr): 1764, 1640 cm⁻¹. ¹H-NMR (DMSO- d_6) δ: 1.66 (9H, s), 7.52 (1H, d, J=8.8 Hz), 7.56 (1H, d, J=8.8 Hz), 8.80 (1H, s), 9.88 (1H, s), 11.08 (1H, br, s, disappeared on addition of D₂O). MS m/z: 339 and 341 (M^{+ 79}Br, ⁸¹Br). *Anal.* Calcd for C₁₄H₁₄BrNO₄: C, 49.43; H, 4.15; N, 4.12. Found: C, 49.47; H, 4.08; N, 3.92.

Compound 23 from 28 A solution of NaOH (10.2 mg, 0.23 mmol) in MeOH (0.5 ml) was added to a solution of 28 (10.7 mg, 0.031 mmol) in MeOH (2 ml), and the mixture was stirred for 2.5 h at room temperature. Saturated NH₄Cl solution was added and the whole was extracted with AcOEt. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a crystalline solid, which was column-chromatographed on SiO₂ with AcOEt–hexane (1:1, v/v) to give 23 (7.1 mg, 93%).

4-Benzyloxy-5-bromo-1-tert-butoxycarbonylindole-3-carbaldehyde (29) from 28 KO-tert-Bu (24.5 mg, 0.22 mmol) was added to a solution of 28 (36.2 mg, 0.11 mmol) in anhydrous DMF (2 ml) at $0\,^{\circ}$ C, and the mixture was stirred at 0 °C for 10 min. To this orange solution was added a solution of benzyl bromide (36.3 mg, 0.21 mmol) in anhydrous DMF (1 ml) and stirring was continued at room temperature for 1 h. Saturated NH₄Cl solution was added and the whole was extracted with AcOEt. The extract was washed with brine, dried over Na2SO4, and evaporated under reduced pressure to leave a crystalline solid, which was column-chromatographed on SiO₂ with AcOEt-hexane (1:4, v/v) to give **29** (44.9 mg, 98%). **29**: mp 154—156 °C (colorless needles, recrystallized from MeOH). IR (KBr): 1743, $1678 \,\mathrm{cm}^{-1}$. ¹H-NMR (CDCl₃) δ : 1.68 (9H, s), 5.15 (2H, s), 7.34— 7.42 (3H, m), 7.49—7.54 (2H, m), 7.59 (1H, d, J=8.8 Hz), 7.95 (1H, d, J=8.8 Hz), 8.23 (1H, s), 10.31 (1H, s). MS m/z: 429 and 431 (M⁺ ⁷⁹Br, ⁸¹Br). Anal. Calcd for C₂₁H₂₀BrNO₄: C, 58.62; H, 4.69; N, 3.26. Found: C, 58.52: H. 4.69: N. 3.06.

4-Benzyloxy-5-bromoindole-3-carbaldehyde (30) from 29 A solution of NaOH (161.8 mg, 4.05 mmol) in MeOH (10 ml) was added to a solution of **29** (288.8 mg, 0.67 mmol) in MeOH (20 ml), and the mixture was stirred at room temperature for 2 h. Saturated NH₄Cl solution was added and the whole was extracted with AcOEt. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a crystalline solid, which was recrystallized from MeOH to give **30** (141.2 mg) as colorless needles. The mother liquor was column-chromatographed on SiO₂ with AcOEt–hexane (1:1, v/v) to give **30** (72.7 mg). Total yield of **30** was 213.9 mg (97%). **30**: mp 167—170 °C. IR (KBr): 3153, 1651, 1630 cm⁻¹. ¹H-NMR (CDCl₃) δ: 5.15 (2H, s), 7.14 (1H, d, J=8.6 Hz), 7.33—7.42 (3H, m), 7.47 (1H, d, J=8.6 Hz), 7.56—7.60 (2H, m), 7.91 (1H, d, J=2.9 Hz, collapsed to s on addition of D₂O), 9.15 (1H, br s, disappeared on addition of D₂O), 10.29 (1H, s). MS m/z: 329 and 331 (M^{+ 79}Br, ⁸¹Br). *Anal*. Calcd for

98 Vol. 50, No. 1

C₁₆H₁₂BrNO₂: C, 58.20; H, 3.66; N, 4.24. Found: C, 58.21; H, 3.61; N, 4.05. 4-Benzyloxy-5-bromoindole-3-acetonitrile (31) from 30 NaBH₄ (5.7 mg, 0.15 mmol) was added to a solution of 30 (32.2 mg, 0.098 mmol) in NH₂CHO-MeOH (1:1, v/v, 4 ml), and the mixture was stirred at room temperature for 0.5 h. To the reaction mixture was added NaCN (52.8 mg, 1.08 mmol) and the whole was refluxed on oil bath at 100 °C for 2 h with stirring. After cooling to room temperature, brine was added and the whole was extracted with CHCl3. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO2 with CHCl3-MeOH (99:1, v/v) to give 31 (32.2 mg, 97%). 31: mp 134—136 °C (colorless needles, recrystallized from AcOEt-hexane). IR (KBr): 3435, 2247 cm⁻¹. 1 H-NMR (CDCl₃) δ : 3.78 (2H, d, J=1.2 Hz), 5.18 (2H, s), 7.07 (1H, d, J=8.5 Hz), 7.19 (1H, dt, J=8.5 Hz)J=2.7, 1.2 Hz, collapsed to br s on addition of D_2O), 7.38 (1H, d, J=8.5 Hz), 7.38—7.45 (3H, m), 7.54—7.57 (2H, m), 8.23 (1H, br s, disappeared on addition of D₂O). MS m/z: 340 and 342 (M⁺ ⁷⁹Br, ⁸¹Br). *Anal.* Calcd for C₁₇H₁₃BrN₂O: C, 59.84; H, 3.84; N, 8.21. Found: C, 59.84; H, 3.81; N, 8.07.

4-Benzyloxy-7-bromo-*N,N***-dimethyltryptamine (32) from 4-Benzyloxy-***N,N***-dimethyltryptamine (7)** Py·HBr·Br₂ (112.8 mg, 0.35 mmol) was added to a solution of 7 (51.5 mg, 0.18 mmol) in CHCl₃–Et₂O (1:1, v/v, 10 ml), and the mixture was stirred at room temperature for 25 h. The reaction mixture was column-chromatographed on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) to give **32** (20.0 mg, 31%). **32**: mp 163–164 °C (colorless prisms, recrystallized from AcOEt). IR (KBr): 2780 (br), 614, 1511 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.14 (6H, s), 2.58 (2H, t, J=7.9 Hz), 3.02 (2H, t, J=7.9 Hz), 5.17 (2H, s), 6.45 (1H, d, J=8.3 Hz), 6.96 (1H, br d, J=2.2 Hz, collapsed to s on addition of D₂O), 7.17 (1H, d, J=8.3 Hz), 7.30—7.41 (3H, m), 7.46—7.50 (2H, m), 8.15 (1H, br s, disappeared on addition of D₂O). MS m/z: 372 and 374 (M⁺ ⁷⁹Br, ⁸¹Br). *Anal.* Calcd for C₁₉H₂₁BrN₂O: C, 61.13; H, 5.67; N, 7.50. Found: C, 61.16; H, 5.57; N, 7.39.

Compound 14 from 32 BBr₃ in heptane (1 M, 0.23 ml, 0.23 mmol) was added to a solution of 32 (20.7 mg, 0.056 mmol) in CH₂Cl₂ (2 ml) at 0 °C, and the mixture was stirred at 0 °C for 1 h under Ar atmosphere. After addition of MeOH (2 ml), the mixture was stirred for an additional 1 h. The whole was column-chromatographed repeatedly on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) to give 14 (6.4 mg, 41%).

4-Benzyloxy-7-bromotryptamine (33) and 4-Benzyloxytryptamine (6) from 20 LiAlH₄ (111.4 mg, 2.94 mmol) was added to a solution of **20** (209.9 mg, 0.62 mmol) in Et₂O (15 ml) at 0 °C, and the mixture was stirred at room temperature for 1.5 h. After addition of MeOH and saturated Rochelle salt under ice cooling, the whole was extracted with AcOEt. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was column-chromatographed on SiO₂ with CHCl₃–MeOH–28% aq.NH₃ (46:5:0.5, v/v) to give **33** (181.7 mg, 86%) and 6^{50} (18.4 mg, 11%) in the order of elution. **33**: mp 145–146 °C (colorless needles, recrystallized from AcOEt). IR (KBr): 3350, 3292, 1614, 1508 cm⁻¹. H-NMR (CD₃OD) δ: 2.85 (2H, t, J=6.8 Hz), 2.94 (2H, t, J=6.8 Hz), 5.15 (2H, s), 6.50 (1H, d, J=8.3 Hz), 6.99 (1H, s), 7.12 (1H, d, J=8.3 Hz), 7.30–7.35 (1H, m), 7.37–7.42 (2H, m), 7.47–7.52 (2H, m). MS m/z: 344 and 346 (M⁺ ⁷⁹Br, ⁸¹Br). *Anal*. Calcd for C₁₇H₁₇BrN₂O: C, 59.14; H, 4.96; N, 8.11. Found: C, 59.19; H, 5.01; N, 8.08.

Compound 32 from 33 A solution of NaBH₃CN (71.4 mg, 1.14 mmol) in MeOH (2 ml) and a solution of 35% HCHO (153.8 mg, 1.79 mmol) in MeOH (2 ml) were successively added to a solution of 33 (144.1 mg, 0.42 mmol) in AcOH (0.6 ml), and the mixture was stirred at room temperature for 4 h. After evaporation of the solvent under reduced pressure, 2 NaOH was added and the whole was extracted with CHCl₃. The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was column-chromatographed on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) to give 32 (141.8 mg, 91%).

4-Benzyloxy-1-*tert*-butoxycarbonyl-*N*,*N*-dimethyltryptamine (36) from 7 (Boc)₂O (0.05 ml, 0.22 mmol) was added to a solution of **7** (30.0 mg, 0.10 mmol) and DMAP (3.2 mg, 0.026 mmol) in CH₂Cl₂ (1 ml), and the mixture was stirred at room temperature for 3 h. The reaction mixture was column-chromatographed on SiO₂ with CHCl₃–MeOH (95:5, v/v) to give **36** (38.7 mg, 96%). **36**: mp 76—78 °C (colorless needles, recrystallized from MeOH–H₂O). IR (KBr): 1735 cm⁻¹. ¹H-NMR (CD₃OD) δ: 1.65 (9H, s), 2.09 (6H, s), 2.58 (2H, t, J=8.1 Hz), 2.94 (2H, t, J=8.1 Hz), 5.17 (2H, s), 6.81 (1H, d, J=8.1 Hz), 7.18 (1H, dd, J=8.3, 8.1 Hz), 7.28 (1H, s), 7.31—7.36 (1H, m), 7.37—7.42 (2H, m), 7.48—7.52 (2H, m), 7.73 (1H, d, J=8.3 Hz). MS m/z: 394 (M⁺). Anal. Calcd for C₂₄H₃₀N₂O₃: C, 73.06; H, 7.67; N, 7.10. Found: C, 73.13; H, 7.74; N, 6.98.

1-tert-Butoxycarbonyl-4-hydroxy-*N*,*N*-dimethyltryptamine (37) from 36 A suspension of 36 (125.1 mg, 0.28 mmol) and 10% Pd–C (39.7 mg) in

MeOH (10 ml) was stirred at room temperature for 2 h under $\rm H_2$ atmosphere. The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:2:0.2, v/v) to give **37** (89.7 mg, 93%). **37**: mp 142—144 °C (colorless prisms, recrystallized from MeOH–H₂O). IR (KBr): 2950, 1726 cm⁻¹. 1 H-NMR (CDCl₃) &: 1.65 (9H, s), 2.37 (6H, s), 2.70—2.75 (2H, m), 2.88—2.93 (2H, m), 6.71 (1H, dd, J=8.1, 1.0 Hz), 7.17 (1H, t, J=8.1 Hz), 7.24 (1H, rs), 7.65 (1H, br d, J=8.1 Hz), 13.45 (1H, br s, disappeared on addition of D₂O). MS m/z: 304 (M⁺). Anal. Calcd for C₁₇H₂₄N₂O₃: C, 67.08; H, 7.95; N, 9.20. Found: C, 67.04; H, 8.03; N, 9.08.

5-Bromo-1-*tert*-butoxycarbonyl-4-hydroxy-*N*,*N*-dimethyltryptamine (38) from 37 Py·HBr·Br₂ (123.5 mg, 0.39 mmol) was added to a solution of 37 (89.4 mg, 0.29 mmol) in CHCl₃–Et₂O (20 ml, 1:1, v/v), and the mixture was stirred for 4 h at room temperature. The reaction mixture was column-chromatographed on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:5: 0.5, v/v) to give 38 (98.0 mg, 87%). 38: mp 160—161 °C (colorless prisms, recrystallized from MeOH). IR (KBr): 1723 cm⁻¹. ¹H-NMR (CD₃OD) δ : 1.64 (9H, s), 2.52 (6H, s), 2.92—2.97 (2H, m), 2.99—3.04 (2H, m), 7.27 (1H, s), 7.30 (1H, d, J=8.8 Hz), 7.41 (1H, d, J=8.8 Hz). MS m/z: 382 and 384 (M⁺ ⁷⁹Br, ⁸¹Br). *Anal*. Calcd for C₁₇H₂₃BrN₂O₃: C, 53.27; H, 6.05; N, 7.31. Found: C, 53.22; H, 6.13; N, 7.19.

Compound 13 from 38 CF₃COOH (0.1 ml) was added to a solution of 38 (10.0 mg, 0.028 mmol) in CH₂Cl₂ (1 ml) at 0 °C and the mixture was stirred at room temperature for 24 h. After evaporation of the solvent under reduced pressure, the residue was column-chromatographed repeatedly on SiO₂ with CHCl₃–MeOH–28% aq. NH₃ (46:5:0.5, v/v) to give 13 (7.3 mg, 97%).

4-Benzyloxy-7-bromo-1-*tert*-butoxycarbonyl-*N*,*N*-dimethyltryptamine (34) from 32 (Boc)₂O (0.03 ml, 0.13 mmol) was added to a solution of 32 (20.0 mg, 0.054 mmol) and DMAP (4.3 mg, 0.035 mmol) in CH₂Cl₂ (2 ml), and the mixture was stirred at room temperature for 1 h. The reaction mixture was column-chromatographed on SiO₂ with CHCl₃-MeOH (95:5, v/v) to give 34 (21.8 mg, 83%). 34: mp 80—82 °C (colorless prisms, recrystalized from petroleum ether). IR (KBr): 1748 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.64 (9H, s), 2.17 (6H, s), 2.65 (2H, t, J=8.1 Hz), 2.99 (2H, t, J=8.1 Hz), 5:14 (2H, s), 6.62 (1H, d, J=8.5 Hz), 7.20 (1H, s), 7.32—7.42 (3H, m), 7.38 (1H, d, J=8.5 Hz), 7.44—7.48 (2H, m). MS m/z: 472 and 474 (M^{+ 79}Br, ⁸¹Br). *Anal*. Calcd for C₂₄H₂₉BrN₂O₃·1/4H₂O: C, 60.32; H, 6.22; N, 5.86. Found: C, 60.33; H, 6.14; N, 5.77.

4-Benzyloxy-5-bromo-1-tert-butoxycarbonyl-N,N-dimethyltryptamine (35) from 38 A solution of 38 (31.7 mg, 0.083 mmol) in anhydrous DMF (1 ml) was added to 35% KH (13.7 mg, 0.12 mmol) at 0 °C with stirring, and the mixture was stirred at room temperature for 10 min. To the resulting suspension was added a solution of benzyl bromide (15.4 mg, 0.09 mmol) in anhydrous DMF (1 ml), and stirring was continued at room temperature for 2 h. Water was added at 0 °C and the whole was extracted with CHCl₃-MeOH (95:5, v/v). The extract was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a yellow oil, which was column-chromatographed on SiO2 with CHCl3-MeOH (95:5, v/v) to give 35 (16.9 mg, 43%). **35**: Colorless oil. IR (film): 1730 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.66 (9H, s), 2.22 (6H, s), 2.76 (2H, t, J=7.9 Hz), 3.00 (2H, t, J=7.9 Hz), 5.09 (2H, s), 7.34—7.44 (3H, m), 7.38 (1H, s), 7.48 (1H, d, J=8.5 Hz), 7.56—7.61 (2H, m), 7.88 (1H, br d, J=8.5 Hz). High-resolution MS m/z: Calcd for C₂₄H₂₉⁷⁹BrN₂O₃: 472.1362. Found: 472.1344. Calcd for $C_{24}H_{29}^{81}BrN_2O_3$: 474.1341. Found: 474.1363.

References and Notes

- 1) This is Part 109 of a series entitled "The Chemistry of Indoles," Part 108: Somei M., Yamada F., Kato J., Suzuki Y., Ueda Y., *Heterocycles*, **56**. (2002), in press.
- Stoll A., Troxler F., Peyer J., Hofmann A., Helv. Chim. Acta, 38, 1452—1472 (1955); Hofmann A., Heim R., Kobel H., Experientia, 14, 107—109 (1958); Hofmann A., Heim R., Brack A., Kobel H., Frey A., Ott H., Petrzilka T., Troxler F., Helv. Chim. Acta, 42, 1557—1572 (1959); Downing D. F., Quarterly Reviews (London), 16, 133—162 (1962); Hofmann A., Bull. Narcotics, 23, 3—14 (1971); Brimble-combe R. W., Pinder R. M., "Hallucinogenic Agents," Wright-Scientechnica, 1975, pp. 106—108.
- Troxler F., Seemann F., Hofmann A., Helv. Chim. Acta, 42, 2073— 2103 (1959).
- Repke D. B., Ferguson W. J., Bates D. K., J. Heterocycl. Chem., 18, 175—179 (1981); Repke D. B., Ferguson W. J., ibid., 19, 845—848 (1982); Repke D. B., Grotjahn D. B., Shulgin A. T., J. Med. Chem., 28, 892—896 (1985) and references cited therein.

- 5) Yamada F., Tamura M., Somei M., Heterocycles, 49, 451—458 (1998).
- Sakagami H., Ogasawara K., Heterocycles, 51, 1131—1135 (1999);
 Nichols D. E., Frescas S., Synthesis, 1999, 935—938.
- Grieco P. A., Hon Y. S., Perez-Medrano A., J. Am. Chem. Soc., 110, 1630—1631 (1988).
- Yamada F., Hashizume T., Somei M., Heterocycles, 47, 509—516 (1998).
- Chu L., Fisher M. H., Goulet M. T., Wyvratt M. J., *Tetrahedron Lett.*, 38, 3871—3874 (1997).
- Street L. J., Baker R., Castro J. L., Chambers M. S., Guiblin A. R., Hobbs S. C., Matassa V. G., Reeve A. J., Beer M. S., Middlemiss D. N., Noble A. J., Stanton J. A., Scholey K., Hargreaves R. J., *J. Med. Chem.*, 36, 1529—1538 (1993).
- 11) Py ·HBr · Br₂ was prepared from pyridine, hydrobromic acid, and bromine: Fieser L. F., Fieser M., "Reagents for Organic Chemistry," Vol. 1, John wiley, New York, 1967, pp. 967—970.
- 12) Somei M., Iwasa E., Yamada F., Heterocycles, 24, 3065—3069 (1986).