
Stereoselective hydrolysis of amino acid esters have at-
tracted considerable attention in connection with understand-
ing the origins of the stereoselectivity observed with prote-
olytic enzymes. In the course of our study on the enantiose-
lective hydrolysis (deacylation) of amino acid esters with the
functional molecular assemblies composed of surfactants and
reactive species, we emphasized that the stereochemical con-
trol could be attained by changing the composition of the co-
aggregates1—4) and regulating ionic strength5,6) and tempera-
ture.7,8)

Furthermore, since cyclodextrins (CyDs) have been noted
as useful enzyme mimics,9—12) we employed CyDs as host
molecules and a markedly high stereoselectivity was attained
in the diastereoselective deacylation of dipeptide esters.13) On
the other hand, Ueno reported the high D-enantiomer-selec-
tive deacylation of amino acid esters mediated by modified
b-CyDs.14) However, little has been known about the signifi-
cant enantioselectivity for the deacylation of amino acid es-
ters with unmodified CyDs.15)

In this study, we report the successful experimental results
with marked enantioselectivity for the deacylation of Z-D(L)-
amino acid esters (N-(benzyloxycarbonyl)-D(L)-amino acid p-
nitrophenyl esters) as mediated by unmodified CyDs, and the
computer modeling (molecular mechanics) studies on the in-
clusion complexes of g-CyD with the specific substrates are
also presented.

Results and Discussion
With respect to the enantioselective hydrolysis (deacyla-

tion) of Z-D(L)-amino acid esters (Z-D(L)-Ala, Leu, Phe and
Trp-PNP) mediated by unmodified a-, b- and g-CyDs, the
kinetic parameters obtained on the basis of the Michaelis–
Menten principle, the binding constant (Kb) for the formation
of CyD-substrate complex and the rate constant (k2) for the
deacylation of substrate by CyD, are summarized in Table
1—3. The noteworthy aspects are as follows: (a) Overall, the
deacylation mediated by a-CyD was favorable for all of the
L-enantiomeric substrates (reflected in k2Kb, L/D51.5—1.7),
though the Kb for D-isomer of Phe substrate and k2 values for
D-isomer of Ala substrate were larger than those for the cor-
responding L-isomers. (b) In the case of the reaction by b-
CyD, L-enantiomer-selectivity was also observed for the dea-
cylation of Ala, Leu and Phe substrates (L/D51.5—3.2),
while D-enantiomeric selectivity (D/L51.4) was observed for
the deacylation of Trp substrate. (c) Relatively higher L-enan-
tioselectivity was obtained in the deacylation mediated by g-
CyD (L/D52.6—9.0). Most remarkably, the highest enantio-
selectivity (L/D59.0) was attained for the deacylation of Ala
substrate. Furthermore, it was also attractive that this fairly
high enantioselectivity (L/D59.0) could be mainly originated
in the deacylation process of substrates, because it was re-
flected by a fairly large k2

L/k2
D value (7.4) and a small Kb

L/Kb
D

(1.2).
On the other hand, Table 4 shows the results of energies

for the inclusion complexes on Z-D(L)-Ala-PNP having dif-
ferent shapes with g-CyD calculated by molecular mechanics
with water solvent effects. It was suggested that the confor-
mation of a hairpin shape (Fig. 2a) should be more favorable
as compared with the straight shape (Fig. 2b) for the inclu-
sion complex on D- or L-isomer and g-CyD. Furthermore, the
energy of the inclusion complex with L-isomer was lower
than that with D-isomer, which is in harmony with the Kb

value (L/D51.2) for the binding process on Z-D(L)-Ala-PNP
and g-CyD. Therefore, it was estimable that Z-D(L)-Ala-PNP
having a hairpin shape was encapsulated by g-CyD as in Fig.
3. Plausibly, the complex between g-CyD and L-isomer hav-
ing a hairpin shape should be more efficient for the next dea-
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Fig. 1. Cyclodextrins (CyDs) and Z-D(L)-Amino Acid Esters
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Fig. 2. Calculated Stable Structures of Hairpin Shape (a) and Straight
Shape (b) on Z-L-Ala-PNP

Fig. 3. The Calculated Stable Structures of Inclusion Complex on Z-L-
Ala-PNP with g-CyD

Table 1. Kinetic Parameters for the Deacylation of Z-D(L)-Amino Acid p-Nitrophenyl Esters Mediated by a-CyD

k2 (s21) Kb (M
21) k2Kb (M

21 s21)
Substrate ks (s21) L/D L/D L/D

L-Isomer D-Isomer L-Isomer D-Isomer L-Isomer D-Isomer

Z-Ala-PNP 0.00291 0.0947 0.166 1.8 (D/L) 1.99 0.778 2.6 0.188 0.129 1.5
Z-Leu-PNP 0.00155 0.0118 0.0112 1.1 11.2 4.99 1.4 0.132 0.0909 1.5
Z-Phe-PNP 0.00419 0.106 0.0302 3.5 8.12 6.97 2.1 (D/L) 0.249 0.151 1.6
Z-Trp-PNP 0.00215 0.0302 0.0282 1.1 2.35 4.41 1.6 0.210 0.124 1.7

25 °C, pH 9.5, 0.02 M carbonate buffer (0.05 M KCl), 10% (v/v) CH3CN–H2O, [substrate]57.031026
M, [a-CyD]5(1.0210)31023

M.

Table 2. Kinetic Parameters for the Deacylation of Z-D(L)-Amino Acid p-Nitrophenyl Esters Mediated by b-CyD

k2 (s21) Kb (M
21) k2Kb (M

21 s21)
Substrate ks (s21) L/D L/D L/D

L-Isomer D-Isomer L-Isomer D-Isomer L-Isomer D-Isomer

Z-Ala-PNP 0.00291 0.140 0.154 1.1 (D/L) 32.9 9.25 3.6 4.61 1.42 3.2
Z-Leu-PNP 0.00155 0.0198 0.0142 1.4 124 62.5 2.0 2.45 0.888 2.8
Z-Phe-PNPa) 0.00419 0.109 0.0484 2.3 95.6 148 1.6 (D/L) 10.4 7.16 1.5
Z-Trp-PNP 0.00215 0.112 0.124 1.1 (D/L) 86.9 114 1.3 (D/L) 9.73 14.1 1.4 (D/L)

25 °C, pH 9.5, 0.02 M carbonate buffer (0.05 M KCl), 10% (v/v) CH3CN–H2O, [substrate]57.031026
M, [b-CyD]5(1.0210)31023

M. a) [b-CyD]5(0.10210)31023
M.

Table 3. Kinetic Parameters for the Deacylation of Z-D(L)-Amino Acid p-Nitrophenyl Esters Mediated by g-CyD

k2 (s21) Kb (M
21) k2Kb (M

21 s21)
Substrate ks (s21) L/D L/D L/D

L-Isomer D-Isomer L-Isomer D-Isomer L-Isomer D-Isomer

Z-Ala-PNP 0.00291 0.264 0.0357 7.4 101 83.4 1.2 26.7 2.98 9.0
Z-Leu-PNP 0.00155 0.0827 0.0146 5.7 147 121 1.2 12.2 1.77 6.9
Z-Phe-PNP 0.00419 0.171 0.0529 3.2 171 89.2 1.9 29.2 4.72 6.2
Z-Trp-PNP 0.00215 0.0957 0.0384 2.5 109 105 1.0 10.4 4.03 2.6

25 °C, pH 9.5, 0.02 M carbonate buffer (0.05 M KCl), 10% (v/v) CH3CN–H2O, [substrate]57.031026
M, [g-CyD]5(1.0210)31023

M.

Table 4. Energies on the Basis of Molecular Mechanics Calculations for
the Inclusion Complexes on Z-D(L)-Ala-PNP Having Different Shapes with
g-CyD in Water

Inclusion complex energy (kJ/mol)

Hairpin shape Straight shape

L-Isomer 254.70 262.42
D-Isomer 261.78 274.99



cylation step as compared with that between g-CyD and the
corresponding D-isomer. More detailed modeling studies are
being continued in order to gain further insight into the ori-
gin of the marked enantioselectivity.

In conclusion, the remarkably high enantioselectivity
(L/D59.0) was observed for the hydrolysis (deacylation) of Z-
D(L)-Ala-PNP mediated by unmodified g-CyD for the first
time. The kinetic results on the basis of the Michaelis–
Menten principle indicate that this L-superior enantioselectiv-
ity should be mainly originated in the deacylation process of
substrates following the formation of g-CyD–substrate (1 : 1)
complexes. The computer modeling (molecular mechanics)
studies supported the L enantioselectivity on the formation of
inclusion complex with the more stable conformer of the
guest.

Experimental
Materials The ester substrates were prepared from N-(benzyloxycar-

bonyl)-D(or L)-amino acids by the esterification of the COOH group with p-
nitrophenol and dicyclohexylcarbodiimide as described in ref 1. These enan-
tiomeric isomers were fully characterized. Commercially available a-, b-
and g-CyDs were recrystallized from deionized water and dried in vacuum
at 40 °C for 24 h.

Kinetic Measurements Under the conditions [CyD]..[substrate],
pseudo-first-order rate constants (kt in the presence of CyD and ks in the ab-
sence of CyD) for the deacylation of amino acid esters were evaluated from
monitoring p-nitrophenolate liberation from the esters at 400 nm. The stoi-
chiometry for the complexation of CyDs and substrates could not be con-
firmed by spectroscopic examinations (1H-NMR, UV and fluorescence mea-
surements). It was assumed that the reaction proceeds via the formation of
1 : 1 complex as shown in eq 1, and the Kb (5k1/k21) and k2 values were de-
termined by the least-squares method from Lineweaver–Burk plots between
1/(kt2ks) and 1/[CyD] in eq 2 (correlation coefficients for the plots were
.0.994) as described in ref 16.

(1)

1/(kt2ks)51/(k22ks)11/{Kb(k22ks)[CyD]} (2)

Calculation Method Conformer search for the structures of Z-D(L)-Ala-
PNP and the inclusion complex with g-CyD was performed on the basis of
Monte Carlo method in conjunction with MMFF17—19) molecular mechanics.
Two minimum energy conformers of Z-D(L)-Ala-PNP were found, one had a
hairpin shape with the p-nitrophenyl group located parallel to the Z group
and the other had a straight shape with the p-nitrophenyl and Z groups lo-
cated in opposite directions. These conformers of Z-D(L)-Ala-PNP were
placed in the center of the cavity of g-CyD, and the most stable structures of
the inclusion complex were searched in order to obtain the starting geome-

tries for the molecular mechanics calculations with water solvent effects.
The molecular mechanics calculations were performed by the conjugate gra-
dient algorithm with OPLS all atom force fields20) as implemented in Macro-
Model 7.1.21) All of the calculations were carried out under the condition of
Max Iteration510000 steps, Converge Threshold50.0010. Solvation was
achieved by using GB/SA solvation model22) inside MacroModel 7.1. Fur-
thermore, preliminary calculations for the formation of the intermediates in
deacylation process have been attempted by the molecular dynamics and
molecular mechanics methods.
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