Synthesis and Muscarinic Activity of Novel Aniline Derivatives with a 1-Azabicyclo[3.3.0]octane Moiety¹⁾

Tomoo Suzuki,*.^{*a*} Mitsuru Oka,^{*a*} Kouji Maeda,^{*a*} Kenichi Furusawa,^{*b*} Hiroshi Uesaka,^{*b*} and Tadashi Kataoka^{*c*}

Drug Discovery Research Laboratory, Sanwa Kagaku Kenkyusho Co., Ltd.,^a 363 Shiosaki, Hokusei-cho, Inabe-gun, Mie 511–04, Japan, Drug Development Laboratory, Sanwa Kagaku Kenkyusho Co., Ltd.,^b 363 Shiosaki, Hokusei-cho, Inabe-gun, Mie 511–04, Japan, and Gifu Pharmaceutical University,^c 5–6–1 Mitahora-higashi, Gifu 502, Japan. Received July 7, 1998; accepted October 6, 1998

In order to develop drugs effective against Alzheimer's disease, we synthesized a series of aniline derivatives having a characteristic cyclic amine, 1-azabicyclo[3.3.0]octane ring, and evaluated their binding affinity for the central muscarinic cholinergic receptor.

Among these compounds which showed high affinity to the M₁ receptor, N-[2-(1-Azabicyclo[3.3.0]octan-5yl)ethyl]-2-nitroaniline (9f fumarate, SK-946) showed the highest affinity. The ability of this compound to improve cognitive function was assessed using the passive avoidance test in scopolamine-induced dementia mice. Some anilines with a 1-azabicyclo[3.3.1]nonane ring were also synthesized by the ring expansion of the 1azabicyclo[3.3.0]octane ring, and showed a high affinity for the central muscarinic cholinergic receptor.

Key Words Alzheimer's disease; 1-azabicyclo[3.3.0]octane; 1-azabicyclo[3.3.1]nonane; muscarinic receptor binding affinity; SK-946

Recently, medical science and technology have made remarkable advances and have prolonged the average human life span. As a result, a variety of diseases of aging have emerged. Alzheimer's disease (AD) is one of the senile dementias, and approximately 12 million people are estimated to suffer from AD in Japan, Europe and the U.S.A. A steady increase in the number of AD patients can be predicted with certainty in the near future.²⁾ AD is characterized by mental deterioration caused by a progressive loss of neurons from particular regions of the brain, accompanied by the presence of neurofibrillary tangles in dead and dying neurons and numerous amyloid-containing senile plaques in affected brain regions.³⁾

Despite the fact that AD seems to be linked to an apparent deficiency of multiple neurotransmitters, evidence for a central role of the cholinergic system in cognitive impairment is very clear.⁴⁾ This cholinergic hypothesis triggered research efforts aimed at restoring defective cholinergic transmission. Muscarine receptor agonist binds to an acetylcholine receptor to actuate the receptor. YM796⁵⁾ and SR46559⁶⁾ have been developed as this type of drug.

Muscarinic M_1 receptors are abundant in the cerebral cortex and hippocampus, and M_1 receptor activation is important for learning and memory.⁷⁾ On the other hand, M_2 receptors are widely distributed in peripheral tissues, and M_2 receptor activation causes cholinergic side effects such as salivation.⁵⁾ Therefore, muscarinic M_1 receptor agonists are expected to be cognition enhancers.

We have continued to develop drugs which can ameliorate AD for several years, and found a new compound, SK-946, which has highly efficacious and selective M_1 affinity.

SK-946 increased inositol phosphate production in primary cultured rat fetal hippocampal neuronal cells, and improved brain function in the scopolamine-induced dementia model mouse.¹⁾

This paper describes the synthesis of SK-946 and a series of aniline derivatives having a characteristic cyclic amine, 1azabicyclo[3.3.0]octane ring, and their biological evaluation for central muscarinic cholinergic receptor binding affinity and cognitive function.

Chemistry

The syntheses of 1-azabicyclo[3.3.0]octane derivatives were described in our previous report.⁸⁾ The requisite 5-chloro(CH₂)_n-1-azabicyclo[3.3.0]octanes **3a** (*n*=1), **3b** (*n*=2) were prepared by chlorination of the corresponding alcohols, and 5-aminoalkyl-1-azabicyclo[3.3.0]octanes (**8a**-**d**) were synthesized by hydrogenating the corresponding cyano compounds.

Various aniline derivatives with the 1-azabicyclo[3.3.0]octane ring for biological tests were prepared by the five routes shown in Chart 2. The compounds **5a**—**d**, **f** were provided by procedure A, starting from the corresponding N-formylaniline derivatives 2, which were converted to N-formyl-N-substituted anilines (4a-e) followed by reduction with BH₃-tetrahydrofuran (THF). When 2-fluoro-*N*-formylaniline (2e) was treated with 3a in the presence of sodium hydride (NaH), deformylation induced alkylation to give N-(1-azabicyclo[3.3.0]octan-5-yl)methyl-2-fluoroaniline (5e) (54.6%) together with an N-formyl derivative 4e (27.3%). N-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-N-methyl-2-(trifluoromethyl)aniline (5g) could not be prepared via an N-formyl derivative 4g by procedure A because of this deformylation. Therefore, compound 5g was synthesized by the alkylation of N-methyl-2-(trifluoromethyl)aniline (6) which was derived by a reduction of *N*-formyl-2-(trifluoromethyl)aniline (2g)

© 1999 Pharmaceutical Society of Japan

a) HCO₂H; b) NaH/DMF; c) BH₃/THF; d) LiAIH₄/THF; e) K₂CO₃/PhNO₂; f) pyridine; g) H₂SO₄

with **3a** in 7.7% yield (procedure B). Direct alkylation of anilines (**1**) with **3a**, **b** gave *N*-monosubstituted aniline derivatives (**5h**—**l**) in low yields (procedure C). Anilines with an electron-withdrawing group at the *ortho*- or *para*-position (**9a**—**q**) were provided by aromatic nucleophilic substitution of the corresponding halobenzenes (**7**) in good yield (procedure D). 2-Carbamoyl derivatives (**9r**, **s**) were prepared by hydrolysis of the corresponding cyano compounds (**9l**, **o**) with H_2SO_4 (procedure E).

We found a very interesting ring expansion reaction in procedure C (Chart 3). Alkylation of aniline derivatives

(1i, k, l) with 3a formed the ring expanded products 10a—c in addition to the desired substituted products 5i, k, l. Miyano and his co-workers reported similar ring expansion reactions of 5-trichloromethyl- or 5-dichloromethyl-1-azabicyclo[3.3.0]octanes to dichloro- and chloro-1-azabicyclo [3.3.1]nonanes, respectively, and synthesized various azabicyclo[3.3.1]nonane analogs.⁹⁾ 2-Chloroaniline (1i) was allowed to react with 3a to afford N-(1-azabicyclo[3.3.0] octan-5-yl)methyl-2-chloroaniline (5i) and N-(1-azabicyclo [3.3.1]nonan-5-yl)-2-chloroaniline (10a) in yields of 44.1% and 30.4%, respectively. The structure of the ring expansion product 10a was characterized by ¹H-NMR, ¹³C-NMR, and MS spectra. The ¹H-NMR spectrum of **10a** showed methylene signals of the [3.3.1]nonane ring: δ 3.01 (2H, s, 9-CH₂), 1.55—1.62, 2.00—2.14 (each 2H, m, 3,7-CH₂), 1.83—1.95, 2.27-2.33 (each 2H, m, 4,6-CH₂) and 2.97-3.07 (4H, m, 2,8-CH₂) in contrast to the signals of 5i: δ 1.59–1.70 (2H, m, 3,7-CH₂), 1.70-1.92 (6H, m, 3,4,6,7-CH₂), 2.62-2.71 and 3.04–3.12 (each 2H, m, 2,8-CH₂), δ 2.98 (2H, d, J=5 Hz, N-CH₂-C). Characteristic ¹³C-NMR peaks of **10a** were observed at δ 48.7 due to the bridgehead carbon (5-C) and 59.9 corresponding to the C-CH2-N (9-C) carbon in comparison with those of 5i: δ 72.8 (5-C) and 52.1 (HN- $\underline{C}H_2$ -C). The ring expansion products were given by the rearrangement of 5-chloromethyl-1-azabicyclo[3.3.0]octane (3a) via an aziridinium ion formed by the intramolecular nucleophilic attack of nitrogen on the chloromethyl group. An amine nucleophilically attacks at the methylene carbon of the aziridinium ring (path a) or at the bridgehead carbon (path b) afford 5-aminomethyl-1-azabicyclo[3.3.0]octane at 5to amino-1-azabicyclo[3.3.1]nonane, respectively. N-(1-Azabicyclo[3.3.1]nonan-5-yl)-3-cyanoaniline (10b) and the 2-(trifluoromethyl)aniline congener (10c) were similarly obtained from the reactions of 1k, 1 and 3a in 19.6% and 33.2% yields, respectively (Table 2).

50	
. <u>=</u>	
2	
5	
ĕ	
a	
C	
ō	
Ξ	
<u> </u>	
i.	
3	
÷.	
×	
- S.	
.5	
al	
Ŋ	
\triangleleft	
<u> </u>	
69	
Ę	
÷Ē	
\$	
ŝ	
é	
.1	
at	
ž	
· 🗆	
e	
р	
0	
ã	
Ξ	
.E	
4	
2	
-	
0	
0	
IS 0	
tors o	
ptors o	
ceptors o	
eceptors o	
Receptors o	
, Receptors o	
A2 Receptors o	
M2 Receptors o	
d M2 Receptors o	
ind M2 Receptors o	
and M2 Receptors o	
11 and M2 Receptors o	
M ₁ and M ₂ Receptors o	
r M_1 and M_2 Receptors o	
for M ₁ and M ₂ Receptors o	
s for M_1 and M_2 Receptors o	
es for M ₁ and M ₂ Receptors o	
ties for M1 and M2 Receptors o	
iities for M ₁ and M ₂ Receptors o	
inities for M_1 and M_2 Receptors o	
ffinities for M1 and M2 Receptors o	
Affinities for M1 and M2 Receptors o	
d Affinities for M_1 and M_2 Receptors o	
nd Affinities for M_1 and M_2 Receptors o	
and Affinities for M_1 and M_2 Receptors o	
s and Affinities for M_1 and M_2 Receptors o	
ons and Affinities for M_1 and M_2 Receptors o	
ions and Affinities for M_1 and M_2 Receptors o	
ations and Affinities for M_1 and M_2 Receptors o	
urations and Affinities for M_1 and M_2 Receptors o	
varations and Affinities for M_1 and M_2 Receptors o	
eparations and Affinities for M1 and M2 Receptors o	
reparations and Affinities for M_1 and M_2 Receptors o	
Preparations and Affinities for M_1 and M_2 Receptors o	
Preparations and Affinities for M ₁ and M ₂ Receptors o	
. Preparations and Affinities for M_1 and M_2 Receptors o	
1. Preparations and Affinities for M_1 and M_2 Receptors o	
e 1. Preparations and Affinities for M_1 and M_2 Receptors o	
ble 1. Preparations and Affinities for M_1 and M_2 Receptors o	
able 1. Preparations and Affinities for M_1 and M_2 Receptors o	

										Ana	lysis (%)			Receptor aff	inities	Dation
Cound	5	1 D	D ²	D3	Decondruce()	dui	Yield	Econorlo	0	alcd		Found		$K_{\rm i}(\mu_{\rm M})^{\prime}$	6)	[³ H]QNB/
Compu.	u	Ч	2	2	Frocedure	(°C)	(%)	FOILIUIA	C	N H	с 	Н	z	[³ H]Pirenzepine(M ₁)	$[^{3}H]QNB^{c)}(M_{2})$	[³ H]pirenzepine
4a	-	H	Н	CHO	Α	Oil	(95.1)	$C_{15}H_{20}N_2O$	73.74 8	.25 11.4	7 73.55	8.40	11.28	0.36	0.95	2.6
4b	0	Н	Н	CHO	А	liO	(88.1)	$C_{16}H_{22}N_{2}O$	74.38 8	.58 10.8	4 74.42	8.73	10.63	1.6	9.0	5.6
5a	1	Н	Η	CH_3	A	liO	88.8	$C_{15}H_{22}N_2$	78.21	.63 12.1	6 78.44	9.69	11.97	1.8	8.6	4.8
5b	0	Н	Η	CH	A	liO	75.1	$C_{16}H_{24}N_2$	78.64 9	90 11.4	6 78.65	9.97	11.25	0.48	10.4	21.7
5c	1	2-Ph	Н	CH,	A	Oil	86.9	$C_{2,H_{2,k}N_{2,k}}$	82.31 8	.55 9.1	4 82.06	8.50	8.86	0.12	0.30	2.5
5d	1	3-Ph	Η	CH	А	Oil	45.3	$C_{21}H_{26}N_2$	82.31 8	.55 9.1	4 82.23	8.58	8.92	2.8	2.4	0.86
Se	1	2-F	Η	Η	$\mathbf{A}^{d)}$	lio	54.6	$C_{14}H_{10}FN_{2}$	71.76 8	.17 11.9	6 71.61	8.23	11.68	0.60	3.8	6.3
Sf	1	2-F	Н	CH_3	А	liO	16.8	C ₁₅ H ₂₁ FN ₂	72.55 8	.52 11.2	8 72.83	8.39	11.24	0.23	1.9	8.3
58	1	$2-CF_3$	Η	CH	В	Oil	7.7	$C_{16}H_{21}F_{3}N_{2}$	64.41	.6 60.	9 64.25	7.02	9.27	0.33	1.8	5.5
5h	0	2-F	Η	Η	C	Oil	48.0	$C_{15}H_{21}FN_2$	72.55 8	.52 11.2	8 72.45	8.28	11.13	1.9	17.9	9.4
Si	1	2-Cl	Н	Η	C	liO	44.1	$C_{14}H_{19}CIN_2$	67.05	.64 11.1	7 66.85	7.49	11.06	0.85	4.4	5.2
5j	0	2-CI	Η	Η	C	liO	40.1	$C_{15}H_{21}CIN_2$	68.04	2.01 99.	8 67.83	8.05	10.80	0.52	15.1	29.0
5k	1	3-CN	Η	Η	C	liO	41.4	$C_{15}H_{19}N_3$	74.65	.94 17.4	1 74.45	7.96	17.48	2.0	7.0	3.5
51	1	$2-CF_3$	Н	Η	C	liO	37.7	$C_{15}H_{19}F_3N_2$	63.37 (.74 9.8	5 63.19	6.64	9.70	0.41	3.4	5.2
9a	1	$4-CF_3$	Η	Η	D	35—37	27.2	$C_{15}H_{10}F_{3}N_{2}$	63.37 (.74 9.8	5 63.02	6.59	9.68	1.2	6.1	5.1
9b	1	$2-NO_2$	Η	Η	D	69—70	80.9	C ₁₄ H ₁₀ N ₃ O ₂	64.35	.33 16.0	8 64.44	7.27	16.05	0.24	2.3	9.6
9c	1	$4-NO_2$	Н	Η	D	67—68	74.4	$C_{14}H_{19}N_{3}O_{2}$	64.35	.33 16.0	8 64.32	7.26	16.12	3.5	9.9	2.8
9d	1	$2-NO_2$	Η	CH3	D	Oil	54.1	$C_{15}H_{21}N_3O_2$	65.43	.69 15.2	6 65.17	7.98	15.30	0.24	0.96	4.0
9e	1	$4-NO_2$	Η	CH ₃	D	liO	35.1	$C_{15}H_{21}N_{3}O_{2}$	65.43	.69 15.2	6 65.54	7.84	. 15.09	1.1	2.5	2.3
9f	7	$2-NO_2$	Н	Н	D	liO	93.5	$C_{15}H_{21}N_3O_2$	65.43	.69 15.2	6 65.20	7.93	15.06	0.12	1.4	11.7
9_{g}	7	$4-NO_2$	Н	Η	D	liO	82.5	$C_{15}H_{21}N_3O_2$	65.43	.69 15.2	6 65.56	7.91	15.15	1.7	11.7	6.9
9h	7	$2-NO_2$	Η	CH_3	D	Oil	85.7	$C_{16}H_{23}N_3O_2$	66.41 8	01 14.5	2 66.03	8.18	14.26	0.24	2.1	8.8
9i	7	$4-NO_2$	Н	CH ₃	D	liO	62.4	$C_{16}H_{23}N_3O_2$	66.41 8	01 14.5	2 66.46	7.98	14.51	0.96	2.5	2.6
9j	7	$2-NO_2$	4-F	Η	D	liO	99.8	$C_{15}H_{20}FN_{3}O_{2}$	61.42 (.87 14.3	2 61.62	6.83	14.30	0.83	5.3	6.4
9k	7	$2-NO_2$	4-0CH ₃	Н	D	38—41	63.9	$C_{16}H_{23}N_3O_3$	66.41 8	01 14.5	2 66.45	7.92	14.66	0.58	5.9	10.2
91	1	2-CN	Н	Η	D	Oil	94.2	$C_{15}H_{19}N_{3}$	74.65	.94 17.4	1 74.35	8.01	17.48	0.66	23.1	35.0
9m	1	4-CN	Η	Н	D	Oil	95.0	$C_{15}H_{19}N_{3}$	74.65	.94 17.4	1 74.75	7.96	17.38	2.3	38.7	16.8
9n	1	2-CN	Η	CH_3	D	Oil	37.4	$C_{16}H_{21}N_3$	75.26 8	.29 16.4	6 75.32	8.40	16.31	0.16	1.6	10.0
90	7	2-CN	Η	Н	D	Oil	95.8	$C_{16}H_{21}N_3$	75.26 8	.29 16.4	6 75.34	8.32	16.32	0.38	7.5	19.7
9p	7	4-CN	Η	Н	D	Oil	99.1	$C_{16}H_{21}N_3$	75.26 8	.29 16.4	6 75.03	8.25	16.42	5.5	>50	>9.1
9q	7	2-CN	Η	CH3	D	Oil	99.7	$C_{17}H_{23}N_{3}$	75.80 8	.61 15.6	0 75.83	8.62	15.68	0.29	4.8	16.6
9r	1	2-CONH ₂	Н	Η	Щ	163-165	71.5	$C_{15}H_{21}N_{3}O$	69.47	.16 16.2	0 69.48	8.13	16.08	0.79	6.5	8.2
9s	7	2-CONH ₂	Η	Н	Ы	145—147	67.0	$C_{16}H_{23}N_{3}O$	70.30	.48 15.3	7 70.15	8.52	15.35	1.3	>50	>38.5
962MY-(-)								$(C_{17}H_{25}NO_7)$	57.45	.09 3.5	4 57.15	7.07	3.88)	1.8	7.7	4.3
SR46559								$(C_{27}H_{38}N_4O_6)$	63.02	.44 10.8	9 62.72	7.37	10.83	0.12	0.98	8.2
a) Refer to	the pro	cedures in the	Experiment	al Section.	b) K_{i} value (μ_{Λ}	() calculated fro	om the resp	ective IC ₅₀ using C	heng-Prusc	ff equation	$K_{\rm i} = {\rm IC}_{50}/1$	+[L]/K _d ,	where [L] a	nd $K_{\rm d}$ are, respectively, lig	and concentration and	d dissociation constant.
K_d values: [² H] I	Pirenzep	vine, cortex, 7.	1 nm; [² H] Q	NB, cerebel	lum, 0.041 nM.	c) [⁷ H] Quinuc	clidinyl ben	zilate. d) 5e was	obtained by	a side rea	ction.					

	Ring
	onane
1	<u>1</u>
,	i.
Ì	<u> </u>
,	Ś
	S.
,	zał
1	4
	al
2	vith
	SS
	Ĕ
	IVa
)er
	eL
į	lin
	√n
,	of 7
	OrS 6
	ept
	ec
	7 R
	Σ
	and
1	Σ
,	<u>for</u>
	es
	III.
;	Ē
	anc
	ons
	ati
	par
	Pre
,	ci.
,	le
ľ	Lat

		- - -	đu	Yield	-		Calcd	Analys	sis(%)	Found		Receptor affi $K_i (\mu_M)^k$	inities	Ratio of [³ H] ONB/
÷	X	Procedure	(°Č)	(%)	Formula	C	Н	Z	C	Н	Z	[³ H] Pirenzepine(M ₁)	[³ H] QNB ^c)(M ₂)	[³ H] pirenzepine
	2-CI	В	5961	30.4	C ₁₄ H ₁₀ CIN,	67.05	7.64	11.17	66.81	7.62	10.93	0.059	0.47	8.0
	3-CN	В	119-120	19.6	C ₁ ,H ₁₀ N	74.65	7.94	17.41	74.39	7.71	17.20	2.2	3.8	1.7
	$2-CF_3$	В	Oil	33.2	$C_{15}H_{19}F_{3}N_{2}$	63.37	6.74	9.85	63.47	6.68	9.59	0.022	0.13	5.9

Table 3. Effect of the Compounds on Scopolamine-Induced Failure ofStep-through Passive Avoidance Response in ddY Mice

Compd.	Dose (µg/kg)	n	R.T. ^{<i>a</i>)} (s)	Criteria ^{b)} (%)
Normal		20	288.4 ± 10.22^{c}	85 ^{<i>d</i>})
Scopolamine control		30	95.9±23.54	5
9f	0.1 (p.o.)	20	124.6 ± 24.66	20
	1.0 (p.o.)	20	176.8 ± 26.89^{e}	50 ^{f)}
	10 (p.o.)	20	224.7 ± 24.66^{c}	50 ^{f)}
	100 (p.o.)	20	179.9 ± 25.63^{e}	35 ^f)
91	0.1 (p.o.)	20	136.1±26.24	20
	1.0 (p.o.)	20	191.7 ± 25.10^{g}	35 ^f)
	10 (p.o.)	20	186.1 ± 28.25^{e}	50 ^{f)}
	100 (p.o.)	20	204.9 ± 26.12^{g}	50 ^{f)}
10a	1.0 (p.o.)	20	110.3 ± 21.54	10
	10 (p.o.)	20	111.9 ± 26.32	20
	100 (p.o.)	20	116.6±27.59	10
Normal		20	283.5±9.34 ^{c)}	85 ^d)
Scopolamine control		30	86.5 ± 17.41	10
(±)-YM796	1.0 (p.o.)	20	125.4 ± 21.6	15
	10 (p.o.)	20	118.5 ± 22.3	10
	100 (p.o.)	20	$184.4\pm24.4^{e)}$	30 ^{f)}

a) R.T.: The latency in retention trial. b) Criteria (%)=(the number of mice showing avoidance more than 300 s/total number of mice)×100. c) p<0.001, e) p<0.05, g) p<0.01 vs. control (Student's t-test). d) p<0.001, f) p<0.05 vs. control (Fisher's exact probability test).

Table 4. Concentration–Effect Relationship of **9f** Fumarate and Carbachol on IP Production in Primary Cultured Rat Fetal Hippocampal Cells Preloaded with [³H]-*myo*-inositol

Concentration	IP Produ	ction (%)
(M)	9f (fumarate)	Carbachol
$\begin{array}{c} \text{Control} \\ 10^{-7} \\ 10^{-6} \\ 10^{-5} \end{array}$	$\begin{array}{c} 9.67 \pm 0.16 \\ 11.61 \pm 0.45^{a)} \\ 12.45 \pm 0.49^{a)} \\ 13.60 \pm 0.50^{b)} \end{array}$	$\begin{array}{c} 8.63 \pm 1.37 \\ 10.55 \pm 0.39 \\ 12.19 \pm 0.61 \\ 16.72 \pm 1.37^{a)} \end{array}$

Each value represents the mean \pm S.E. of 4 wells. *a*) p<0.01, *b*) p<0.001: significant difference from control (Fisher's protected least significant difference test).

Pharmacological Results and Discussion

=

We have already shown that quinoline and naphthalene derivatives with a 1-azabicyclo[3.3.0]octane ring had strong affinities for the muscarinic receptor.⁸⁾ Therefore, aniline derivatives can be expected to have a strong effect on the muscarinic receptor.

The compounds thus prepared were tested *in vitro* for their affinity to M_1 and M_2 receptors, and *in vivo* for behavioral efficacy to scopolamine-induced dementia models.

The affinity for the muscarinic receptor of aniline derivatives having a 1-azabicyclo[3.3.0]octane ring was examined and the results are shown in Table 1.

Initially, the effect of the substituent R¹ of the benzene ring was examined. The affinity of aniline derivatives **5** and **9** $(n=1, R^2=R^3=H)$ for the M₁ receptor decreased in the order of **5n** (R¹=2-NO₂)>**5l** (2-CF₃)>**5e** (2-F)>**9l** (2-CN)>**9r** (2-CONH₂)>**5i** (2-Cl). Compounds with a substituent at the 3or 4-position (**5k**, **5m**, **9c**, and **9m**) showed weaker M₁ activities than the 2-substituted derivatives. The ethylene-chained compounds ($n=2, R^2=R^3=H$) were ranked for M₁ affinity as follows: **9f** (R¹=2-NO₂, free base of SK-946)>**9o** (2-CN)>**5j** (2-Cl)>**9s** (2-CONH₂)>**5h** (2-F). These compounds showed high selectivity to the M_1 receptor, and their M_1 receptor affinities were stronger than those of 4-substitued derivatives (9g and 9p).

Among the *N*-methyl derivatives ((n=1, $R^2=H$, $R^3=Me$), **5c** ($R^1=2$ -Ph), **5f** (2-F), **5g** (2-CF₃), **9d** (2-NO₂) and **9n** (2-CN) had almost the same strong activities for the M₁ receptor, but the M₁/M₂ selectivity was low except for **9n**. The 3or 4-substituted derivative (**5d** or **9e**) and unsubstituted derivative (**5a**) were much weaker than the *N*-methyl derivatives. The ethylene-chained compounds (n=2, $R^2=H$, $R^3=Me$) were ranked for M₁ affinity as follows: **9h** ($R^1=2$ -NO₂)>**9q** (2-CN)>**5b** (H)>**9i** (4-NO₂).

The affinity of compounds with NO₂ substitution was compared. Under the conditions $R^1=2-NO_2$ in aniline derivatives, compound **9f** (n=2, $R^2=R^3=H$) showed the highest M₁ affinity and high M₁ selectivity in 2-nitroaniline derivatives. Some other aniline derivatives (**9b**, **9d**, and **9h**) also had high affinity for the M₁ receptor. The introduction of a substituent at the 4-position decreased the activity (**9j** and **9k**). In the 2cyano compounds ($R^1=2$ -CN), 2-cyano-*N*-methylaniline derivatives (**9n** and **9q**) had high binding activity to the M₁ receptor.

Similarly to the above result, the introduction of a strong electron-withdrawing group to the aniline derivative enhanced affinity for the M₁ receptor. Compounds which had a substituent at the 2-position exhibited stronger M₁ activities than 4-substituted derivatives. Some compounds which introduced a substituent at the 2-position on the aniline had strong affinity for the M₁ receptor, but less selectivity to the M₁ receptor. Two compounds were chosen as desirable samples for the in vivo test. Thus, compound 9f had the most potent affinity for the M₁ receptor, and **91** had the most M₁ selectivity of the compounds tested, having M₁ receptor selectivity more potent than 1.0 μ M. 9f was more potent and had higher selectivity than (-)-YM796 and SR46559, and 91 had more M₁ selectivity than these. The compound 9f ameliorated scopolamine-induced impairment in passive avoidance tasks at $1.0 \,\mu g/kg$ (p.o.) (Table 3). The agonistic property of **9f** was confirmed by receptor-stimulated phosphoinositide hydrolysis in primary cultured rat fetal hippocampal neuronal cells preloaded with [³H]-myo-inositol (Table 4). Inositol phosphate (IP) production was expressed as $[^{3}H]$ IP/($[^{3}H]$ IP+incorporated [³H]-myo-inositol)%. 9f fumarate increased IP production at a concentration of more than 10^{-7} M.

The affinity for the muscarinic receptor of aniline derivatives with a 1-azabicyclo[3.3.1]nonane moiety was examined (Table 2). These compounds, **10a**—**c** had unexpectedly strong affinity for the muscarinic receptor. Compound **10a** had an affinity for the M₁ receptor with a K_i value of 59 nM, and high selectivity to the M₁ receptor. However, this compound was less active in ameliorating impairment in passive avoidance tasks than we expected (Table 3).

Experimental

All melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. Infrared (IR) spectra were taken with a Perkin–Elmer 1600 spectrometer. NMR spectra were recorded on a JEOL JNM-GSX270 spectrometer (270 MHz for ¹H and 68 MHz for ¹³C). Chemical shifts are expressed in δ (ppm) values with tetramethylsilane as an internal standard and the following abbreviations are used: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, br=broad, dd=double doublet, ddd=double doublet and dt=double triplet. Mass spectra (MS) were recorded on a JEOL JMS-DX300, or on a JEOL JMS-SX102.

Procedure A. N-(1-Azabicvclo[3.3.0]octan-5-vl)methyl-N-formylaniline (4a) and N-(1-azabicyclo[3.3.0]octan-5-yl)methyl-N-methylaniline (5a) To a solution of formanilide (2a) (1.90 g, 15.7 mmol) in N,N-dimethylformamide (DMF) (50.0 ml) was added 60% NaH (2.51 g, 62.7 mmol) at -60 °C, and the mixture was stirred at 10-15 °C for 1 h. 5-Chloromethyl-1-azabicyclo[3.3.0]octane hydrochloride (3a) (3.38 g, 17.2 mmol) was added to the mixture at -60 °C. After stirring at 15 °C for 3 h, the reaction mixture was poured into 200 ml of ice-water and extracted with AcOEt (600 ml). The extract was washed with brine (50 ml), dried and evaporated in vacuo. The residue was chromatographed on silica gel and eluted with AcOEt-triethylamine (70/1) to give 3.65 g (95.1%) of 4a as a pale yellow oil. IR (neat) cm⁻¹: 3450, 2957, 1596, 1496. ¹H-NMR (CDCl₂) δ : 1.23-1.77 (8H, m, 3,4,6,7-CH2 of azabicyclooctane), 2.49 and 2.98 (each 2H, dt, J=10, 4 Hz, 2,8-CH₂ of azabicyclooctane), 3.83 (2H, s, CHO-N-CH₂), 7.21 (2H, d, J=6 Hz, aromatic H), 7.29 (1H, t, J=6 Hz, aromatic H), 7.40 (2H, t, J=6 Hz, aromatic H), 8.35 (1H, s, CHO). CIMS m/z: 245 $((M+1)^+$, base peak).

A solution of **4a** (2.80 g, 11.5 mmol) in THF (45.0 ml) was added dropwise to BH₃–THF (1 M) (46.0 ml, 46.0 mmol) at 0 °C, and stirred at room temperature overnight and then at 40—50 °C for 1 h. To the reaction mixture was added 6 N HCl (6.70 ml) in an ice-bath. The organic solvent was removed by distillation under atmospheric pressure. The resulting mixture was made basic by NaOH pellet in an ice-bath, extracted with Et₂O (80 ml×4), dried, and then concentrated *in vacuo*. The residue was chromatographed on silica gel and eluted with AcOEt–triethylamine to give 2.45 g (92.5%) of **5a** as a colorless oil. IR (neat) cm⁻¹: 2956, 1599, 1506. ¹H–NMR (CDCl₃) δ : 1.47—1.90 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.59 and 3.01 (each 2H, dt, *J*=11, 6 Hz, 2,8-CH₂ of azabicyclooctane), 3.04 (3H, s, CH₃), 3.27 (2H, s, CH₂–N-CH₃), 6.65 (1H, t, *J*=7 Hz, aromatic H), 6.77 (2H, d, *J*=7 Hz, aromatic H), 7.21 (2H, t, *J*=7 Hz, aromatic H). EIMS *m/z*: 230 (M⁺), 110 (base peak).

N-[2-(1-Azabicyclo[3.3.0]octan-5-yl)ethyl]-*N*-formylaniline (4b) and *N*-[2-(1-Azabicyclo[3.3.0]octan-5-yl)ethyl]-*N*-methylaniline (5b) In a similar manner to that described in procedure A, a reaction of 2a (1.80 g, 14.9 mmol) with 60% NaH (2.38 g, 59.5 mmol) and 5-(2-chloroethyl)-1-azabicyclo[3.3.0]octane hydrochloride (3b) (3.43 g, 16.3 mmol), as for 4a, gave 3.39 g (88.1%) of 5b as a pale yellow oil. IR (neat) cm⁻¹: 3529, 2954, 1682, 1596, 1497. ¹H-NMR (CDCl₃) δ : 1.50—1.83 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and OHC-N-CH₂-CH₂-), 2.56 and 2.95 (each 2H, dt, J=11, 5Hz, 2-CH₂ of azabicyclooctane), 3.81—3.90 (2H, m, OHC-N-CH₂-CH₂-), 7.18 (2H, dd, J=7, 2 Hz, aromatic H), 7.29 (1H, dt, J=7, 2 Hz, aromatic H), 7.40 (2H, dt, J=7, 2 Hz, aromatic H), 8.38 (1H, s, CHO). EIMS m/z: 258 (M⁺), 110 (base peak).

In a similar manner to that described in procedure A, **4b** (2.60 g, 10.1 mmol) was treated with BH₃–THF (1 M) (40.0 ml, 40.0 mmol) to give 2.01 g (81.4%) of **5b** as a pale yellow oil. IR (neat) cm⁻¹: 2952, 1600, 1507. ¹H-NMR (CDCl₃) & 1.55–1.82 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and CH₃-N-CH₂-C<u>H₂-</u>), 2.60 and 3.00 (each 2H, dt, J=10, 6 Hz, 2,8-CH₂ of azabicyclooctane), 2.90 (3H, s, CH₃), 3.35–3.42 (2H, m, CH₃-N-CH₂-), 6.66 (1H, t, J=7 Hz, aromatic H), 6.72 (2H, d, J=7 Hz, aromatic H), 7.22 (2H, t, J=7 Hz, aromatic H). EIMS m/z: 244 (M⁺), 110 (base peak).

N-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-*N*-methyl-2-phenylaniline (5c) In a similar manner to that described in procedure A, a reaction of *N*-formyl-2-phenylaniline (2c) (286 mg, 1.45 mmol) with 60% NaH (260 mg, 6.50 mmol) and 3a (300 mg, 1.53 mmol), as for 4a, gave 452 mg (97.3%) of *N*-(1-azabicyclo[3.3.0]octan-5-yl)methyl-*N*-formyl-2-phenylaniline (4c) as a colorless oil. ¹H-NMR (CDCl₃) & 1.17—1.73 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.39 and 2.86 (each 2H, dt, J=10, 7 Hz, 2,8-CH₂ of azabicyclooctane), 3.02—3.18 (2H, m, OHC-N-CH₂), 7.18—7.45 (9H, m, aromatic H), 8.48 (1H, s, CHO). CIMS *m/z*: 321 ((M+1)⁺, base peak).

In a similar manner to that described in procedure A, **4c** (450 mg, 1.40 mmol) was treated with BH₃–THF (1 M) (5.00 ml, 5.00 mmol) to give 383 mg (89.3%) of **5c** as a pale yellow oil. IR (neat) cm⁻¹: 2952, 1593, 1481, 1433. ¹H-NMR (CDCl₃) δ : 1.34–1.84 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.48 and 2.87 (each 2H, dt, J=11, 7 Hz, 2,8-CH₂ of azabicyclooctane), 2.60 (3H, s, CH₃), 2.85 (2H, s, CH₃-N-C<u>H₂</u>), 7.03 (1H, t, J=7 Hz, aromatic H), 7.19–7.30 (4H, m, aromatic H), 7.37 (2H, t, J=7 Hz, aromatic H), 7.48 (2H, d, J=7 Hz, aromatic H). CIMS m/z: 307 ((M+1)⁺), 110 (base peak).

N-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-*N*-methyl-3-phenylaniline (5d) In a similar manner to that described in procedure A, a reaction of *N*-formyl-3-phenylaniline (2d) (286 mg, 1.45 mmol) with 60% NaH (260 mg, 6.50 mmol) and 3a (300 mg, 1.53 mmol), as for 4a, gave 385 mg (82.7%) of *N*-(1-azabicyclo[3.3.0]octan-5-yl)methyl-*N*-formyl-3-phenylaniline (4d) as a

colorless oil. ¹H-NMR (CDCl₃) δ : 1.28—1.76 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.50 and 2.99 (each 2H, dt, J=10, 6 Hz, 2,8-CH₂ of azabicyclooctane), 3.87 (2H, s, OHC-N-C<u>H₂</u>), 7.18—7.60 (9H, m, aromatic H), 8.43 (1H, s, CHO). CIMS *m/z*: 321 ((M+1)⁺, base peak).

In a similar manner to that described in procedure A, **4d** (370 mg, 1.15 mmol) was treated with BH₃–THF (1 M) (4.00 ml, 4.00 mmol) to give 193 mg (54.8%) of **5d** as a pale yellow oil. IR (neat) cm⁻¹: 2953, 1597, 1490. ¹H-NMR (CDCl₃) δ : 1.50–1.84 (8H, m, 3,4,6,7-CH₂ of azabicy-clooctane), 2.60 and 3.04 (each 2H, dt, *J*=10, 6 Hz, 2,8-CH₂ of azabicy-clooctane), 3.11 (3H, s, CH₃), 3.33 (2H, s, CH₃-N-CH₂), 6.76–7.02 (3H, m, aromatic H), 7.24–7.35 (2H, m, aromatic H), 7.42 (2H, t, *J*=7 Hz, aromatic H). CIMS *m/z*: 307 ((M+1)⁺), 110 (base peak).

N-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-2-fluoroaniline (5e) and *N*-(1-azabicyclo[3.3.0]octan-5-yl)methyl-*N*-methyl-2-fluoroaniline (5f) In a similar manner to that described in procedure A, a reaction of 2-fluoro-*N*-formylaniline (2e) (3.00 g, 21.6 mmol) with 60% NaH (3.46 mg, 86.5 mmol) and **3a** (4.66 g, 23.8 mmol) as for **4a** gave 1.55 g (27.3%) of *N*-(1-azabicyclo[3.3.0]octan-5-yl)methyl-*N*-formyl-2-fluoroaniline (4e) as a colorless oil and 2.76 g (54.6%) of **5e** as a colorless oil. **4e**: ¹H-NMR (CDCl₃) δ : 1.31—1.77 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.44—2.59 and 2.89—3.01 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 3.78 (2H, m, OHC-N-CH₂), 7.15—7.35 (4H, m, aromatic H), 8.38 (1H, s, CHO). CIMS *m*/z: 263 ((M+1)⁺, base peak). **5e**: IR (neat) cm⁻¹: 3368, 2954, 1619, 1522. ¹H-NMR (CDCl₃) δ : 1.57—1.91 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.60—2.69 and 3.01—3.09 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 2.97 (2H, s, N-CH₂), 4.36 (1H, br s, NH), 6.54—6.71 (2H, m, aromatic H), 6.91—7.00 (2H, m, aromatic H). CIMS *m*/z: 235 ((M+1)⁺), 110 (base peak).

In a similar manner to that described in procedure A, **4e** (1.55 g, 5.91 mmol) was treated with BH₃–THF (1 M) (24.0 ml, 24.0 mmol) to give 1.22 g (85.9%) of **5f** as a colorless oil. IR (neat) cm⁻¹: 2952, 1611, 1501, 1213. ¹H-NMR (CDCl₃) δ : 1.46—1.98 (8H, m, 3,4,6,7-CH₂ of azabicy-clooctane), 2.56 and 2.98 (each 2H, dt, *J*=10, 6Hz, 2,8-CH₂ of azabicy-clooctane), 2.96 (3H, s, CH₃), 3.13 (2H, s, CH₃-N-CH₂), 6.76—6.83 (1H, m, aromatic H), 6.93—7.03 (3H, m, aromatic H). CIMS *m/z*: 249 ((M+1)⁺, base peak).

Procedure B. *N*-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-*N*-methyl-2-(trifluoromethyl)aniline (5g) A reaction of *N*-methyl-2-(trifluoromethyl) aniline (6) (570 mg, 3.25 mmol) with 60% NaH (521 mg, 13.0 mmol) and 3a (702 mg, 3.60 mmol) in DMF (10.0 ml) gave 74.7 mg (7.7%) of 5g as a pale yellow oil. IR (neat) cm⁻¹: 2951, 2864, 1597, 1492. ¹H-NMR (CDCl₃) δ: 1.41—1.97 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.52—2.60 and 2.96—3.04 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 2.70 (3H, s, CH₃), 2.97 (2H, s, CH₃-N-CH₂), 6.97—3.04 (1H, m, aromatic H), 7.14—7.17 (3H, m, aromatic H). CIMS *m/z*: 299 ((M+1)⁺), 110 (base peak).

Procedure C. *N*-[2-(1-Azabicyclo[3.3.0]octan-5-yl)ethyl-2-fluoroaniline (5h) A suspension of 2-fluoroaniline (1f) (400 mg, 3.60 mmol), 3b (1.51 g, 7.20 mmol) and K₂CO₃ (2.99 g, 21.6 mmol) in nitrobenzene (12.5 ml) was stirred at 120 °C for 20 h. 10% NaOH (15 ml) was added to the resulting mixture and extracted with AcOEt (80 ml×3). The extract was washed with brine (150 ml), dried, and concentrated *in vacuo*. The residue was chromatographed on silica gel and eluted with AcOEt–triethylamine to give 429 mg (48.0%) of 5 h as a colorless oil. IR (neat) cm⁻¹: 3241, 2954, 1619, 1524. ¹H-NMR (CDCl₃) & 1.55—1.78 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane), 3.18 (2H, t, *J*=6 Hz, NH-CH₂-CH₂), 5.79 (1H, br s, NH), 6.53—6.68 (2H, m, aromatic H), 6.87—6.95 (2H, m, aromatic H). EIMS *m/z*: 248 (M⁺), 110 (base peak).

N-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-2-chloroaniline (5i) and N-(1-Azabicyclo[3.3.1]nonan-5-yl)-2-chloroaniline (10a) In a similar manner to that described in procedure C, a reaction of 2-chloroaniline (1i) (1.46 g, 11.4 mmol), **3a** (4.50 g, 22.9 mmol) and K₂CO₃ (4.74 g, 34.3 mmol) in nitrobenzene (80.0 ml) gave 1.27 g (44.1%) of 5i as a brown oil and 870 mg (30.4%) of **10a** as a white powder. **5i**: IR (neat) cm⁻¹: 3352, 2954, 1599, 1510. ¹H-NMR (CDCl₃) δ: 1.59–1.70 (2H, m, 3,7-CH₂ of azabicyclooctane), 1.70-1.92 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.62-2.71 and 3.04-3.12 (each 2H, m, 2,8-CH2 of azabicyclooctane), 2.98 (2H, d, J=5 Hz, NH-CH₂), 4.82 (1H, br s, NH), 6.59 (1H, dt, J=2, 8 Hz, aromatic H), 6.63 (1H, dd, J=8, 2 Hz, aromatic H), 7.11 (1H, dt, J=2, 8 Hz, aromatic H), 7.23 (1H, dd, J=8, 2 Hz, aromatic H). ¹³C-NMR (CDCl₃) δ : 25.1 (3,7-C of azabicyclooctane), 36.7 (4,6-C of azabicyclooctane), 52.1 (NH-CH₂), 55.6 (2,8-C of azabicyclooctane), 72.8 (5-C of azabicyclooctane), 111.2 (6-C of aniline), 116.6 (4-C of aniline), 119.3 (2-C of aniline), 127.7 (5-C of aniline), 129.0 (3-C of aniline), 144.8 (1-C of aniline). EIMS m/z: 110 (base peak). CIMS m/z: 251 ((M+1)⁺), 110 (base peak). **10a**: mp 59—61 °C. IR (KBr) cm⁻¹: 3388, 2929, 1594, 1342. ¹H-NMR (CDCl₃) δ : 1.55—1.62 (2H, m, 3,7-CH₂ of azabicyclononane), 1.83—1.95 (2H, m, 4,6-CH₂ of azabicyclononane), 2.00—2.14 (2H, m, 3,7-CH₂ of azabicyclononane), 2.27—2.33 (2H, m, 4,6-CH₂ of azabicyclononane), 2.97—3.07 (4H, m, 2,8-CH₂ of azabicyclononane), 3.01 (2H, s, 9-CH₂ of azabicyclononane), 4.03 (1H, br s, NH), 6.65 (1H, dt, J=2, 7Hz, aromatic H), 6.95 (1H, dd, J=8, 2Hz, aromatic H), 7.08 (1H, dt, J=2, 7Hz, aromatic H), 7.25 (1H, dd, J=8, 2Hz, aromatic H). ¹³C-NMR (CDCl₃) δ : 23.7 (3,7-C of azabicyclononane), 51.7 (2,8-C of azabicyclononane), 59.9 (9-C of azabicyclononane), 116.5 (6-C-aniline), 118.1 (4-C-aniline), 121.5 (2-C-aniline), 127.1 (5-C-aniline), 129.5 (3-C-aniline), 142.1 (1-C-aniline). EIMS m/z: 250 (M⁺), 71 (base peak).

N-[2-(1-Azabicyclo[3.3.0]octan-5-yl)ethyl]-2-chloroaniline (5j) In a similar manner to that described in procedure C, a reaction of 1i (600 mg, 4.60 mmol), 3b (1.98 g, 9.42 mmol) and K₂CO₃ (3.90 g, 28.2 mmol) in nitrobenzene (30.0 ml) gave 499 mg (40.1%) of 5j as a colorless oil. IR (neat) cm⁻¹: 3217, 2954, 1598, 1516. ¹H-NMR (CDCl₃) δ : 1.59—1.81 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and NH-CH₂-CH₂), 2.57—2.61 and 3.03—3.06 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 3.20 (2H, t, *J*=6 Hz, NH-CH₂-CH₂), 6.50 (1H, br s, NH), 6.54—6.60 (2H, m, aromatic H), 7.10 (1H, dt, *J*=2, 8 Hz, aromatic H), 7.21 (1H, dd, *J*=8, 2 Hz, aromatic H). EIMS *m/z*: 264 (M⁺), 110 (base peak).

3-(1-Azabicyclo[3.3.0]octan-5-yl)methylaminobenzonitrile (5k) and 3-(1-Azabicyclo[3.3.1]nonan-5-yl)aminobenzonitrile (10b) In a similar manner to that described in procedure C, a reaction of 3-aminobenzonitrile (1k) (1.28 g, 10.8 mmol), 3a (4.25 g, 21.7 mmol) and K₂CO₃ (4.50 g, 32.6 mmol) in nitrobenzene (80.0 ml) gave 1.08 g (41.4%) of 5k as a brown oil and 510 mg (19.6%) of **10b**. **5k**: IR (neat) cm⁻¹: 3383, 2956, 2227, 1601. ¹H-NMR (CDCl₃) δ: 1.61—1.90 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.62-2.70 and 2.97-3.06 (each 2H, m, 2,8-CH, of azabicyclooctane), 2.93 (2H, d, J=6 Hz, NH-C \underline{H}_2), 4.51 (1H, br s, NH), 6.80 (1H, dt, J=2, 7 Hz, aromatic H), 6.81 (1H, d, J=2 Hz, aromatic H), 6.92 (1H, dt, J=2, 7 Hz, aromatic H), 7.19 (1H, dt, J=8, 2Hz, aromatic H). CIMS m/z: 241 $((M+1)^+, base peak)$. **10b**: mp 119—120 °C. IR (KBr) cm⁻¹: 3269, 2937, 2228, 1600. ¹H-NMR (CDCl₃) δ: 1.58–1.65 (2H, m, 3,7-CH₂ of azabicyclononane), 1.77-1.90 (2H, m, 4,6-CH₂ of azabicyclononane), 2.04-2.15 (2H, m, 3,7-CH2 of azabicyclononane), 2.25-2.32 (2H, m, 4,6-CH2 of azabicyclononane), 2.93 (2H, s, 9-CH₂ of azabicyclononane), 3.00-3.07 (4H, m, 2,8-CH₂ of azabicyclononane), 3.45 (1H, br s, NH) 6.84-6.99 (3H, m, aromatic H), 7.19 (1H, t, J=9 Hz, aromatic H). CIMS m/z: 241 ((M+1)⁺), 71 (base peak).

N-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-2-(trifluoromethyl)aniline (51) and N-(1-Azabicyclo[3.3.1]nonan-5-yl)methyl-2-(trifluoromethyl) aniline (10c) In a similar manner to that described in procedure C, a reaction of 2-(trifluoromethyl)aniline (11) (150 mg, 0.931 mmol), 3a (365 mg, 1.86 mmol) and K₂CO₃ (900 mg, 5.59 mmol) in nitrobenzene (5.00 ml) gave 99.8 mg (37.7%) of 5l as a brown oil and 87.8 mg (33.2%) of 10c. 5l: IR (neat) cm⁻¹: 3376, 2956, 1615, 1515. ¹H-NMR (CDCl₂) δ: 1.61–1.87 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.61-2.69 and 3.02-3.10 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 2.97 (2H, d, J=5 Hz, NH-CH₂), 5.04 (1H, br s, NH), 6.66 (1H, t, J=7 Hz, aromatic H), 6.68 (1H, d, J=7 Hz, aromatic H), 7.35 (1H, t, J=7 Hz, aromatic H), 7.42 (1H, d, J=7 Hz, aromatic H). CIMS m/z: 285 ((M+1)⁺, base peak). **10c**: IR (neat) cm⁻¹: 3458, 2936, 1614, 1588. ¹H-NMR (CDCl₃) δ: 1.56–1.62 (2H, m, 3,7-CH₂ of azabicyclononane), 1.82-1.94 (2H, m, 4,6-CH2 of azabicyclononane), 2.04-2.10 (2H, m, 3,7-CH₂ of azabicyclononane), 2.31-2.37 (2H, m, 4,6-CH₂ of azabicyclononane), 2.98-3.07 (4H, m, 2,8-CH₂ of azabicyclononane), 2.99 (2H, s, 9-CH₂ of azabicyclononane), 4.03 (1H, br s, NH), 6.71 (1H, t, J=8 Hz, aromatic H), 6.98 (1H, d, J=8 Hz, aromatic H), 7.29 (1H, t, J=8 Hz, aromatic H), 7.42 (1H, d, J=8 Hz, aromatic H). CIMS m/z: 285 $((M+1)^+$, base peak).

Procedure D. *N*-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-4-(trifluoromethyl)aniline (9a) A suspension of 4-fluorobenzotrifluoride (7a) (1.50 g, 9.14 mmol), 5-aminomethyl-1-azabicyclo[3.3.0]octane (8a) (3.20 g, 22.9 mmol), and sodium acetate (500 mg) in pyridine (8.0 ml) was stirred at 170 °C for 20 h in a sealed tube and then concentrated *in vacuo*. To the residue was added $1 \times$ NaOH (30 ml), and the mixture was extracted with AcOEt (80 ml×3). The extract was washed with brine (200 ml), dried, and concentrated *in vacuo*. The residue was chromatographed on silica gel eluting with AcOEt–triethylamine (20/1) to give 708 mg (27.2%) of 9a as a yellow powder, mp 35—37 °C. IR (KBr) cm⁻¹: 3348, 2951, 1618, 1329. ¹H-NMR (CDCl₃) δ : 1.60—1.87 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.62—2.70 and 3.01—3.07 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 2.97

(2H, d, J=5 Hz, NH-C<u>H</u>₂), 4.58 (1H, br s, NH), 6.61 (2H, d, J=9 Hz, aromatic H), 7.37 (2H, d, J=9 Hz, aromatic H). CIMS m/z: 285 ((M+1)⁺), 110 (base peak).

N-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-2-nitroaniline (9b) In a similar manner to that described in procedure D, a solution of *o*-chloronitrobenzene (7b) (3.16 g, 20.1 mmol) and **8a** (5.60 g, 39.9 mmol) in EtOH was stirred in a sealed tube at 120 °C for 19 h to give 4.02 g (80.9%) of **9b** as a yellow powder, mp 69—70 °C. IR (KBr) cm⁻¹: 3362, 2950, 1622, 1513. ¹H-NMR (CDCl₃) δ : 1.64—1.90 (8H, m, 34,6,7-CH₂ of azabicyclooctane), 2.63—2.73 and 3.09—3.18 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 3.16 (2H, d, J=5 Hz, CH₂-NH), 6.60 (1H, t, J=9 Hz, aromatic H), 6.83 (1H, d, J=9 Hz, aromatic H), 7.40 (1H, t, J=9 Hz, aromatic H), 8.16 (1H, d, J=9 Hz, aromatic H), 8.36 (1H, br s, NH). EIMS *m/z*: 261 (M⁺), 110 (base peak).

N-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-4-nitroaniline (9c) In a similar manner to that described in procedure D, a solution of *p*-chloronitrobenzene (7c) (3.16 g, 20.1 mmol) and **8a** (5.60 g, 39.9 mmol) in EtOH was stirred in a sealed tube at 120 °C for 24 h to give 3.70 g (74.4%) of 9c as a yellow powder, mp 67—68 °C. IR (KBr) cm⁻¹: 3368, 2952, 1602, 1502. ¹H-NMR (CDCl₃) δ : 1.63—1.89 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.62—2.72 and 2.96—3.06 (each 2H, m, 2.8-CH₂ of azabicyclooctane), 3.04 (2H, d, *J*=5 Hz, CH₂-NH), 5.27 (1H, br s, NH), 6.53 (2H, d, *J*=9 Hz, aromatic H), 8.06 (2H, d, *J*=9 Hz, aromatic H). EIMS *m/z*: 261 (M⁺), 110 (base peak).

N-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-*N*-methyl-2-nitroaniline (9d) In a similar manner to that described in procedure D, a suspension of 7b (1.27 g, 8.06 mmol), 5-(methylaminomethyl)-1-azabicyclo[3.3.0]octane (8b) (2.50 g, 16.2 mmol) and NaI (50.0 mg) in pyridine was refluxed for 12 h to give 1.20 g (54.1%) of 9d as a yellow oil. IR (neat) cm⁻¹: 2955, 1604, 1514. ¹H-NMR (CDCl₃) δ : 1.51—1.90 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.55 and 2.99 (each 2H, dt, J=11, 6 Hz, 2,8-CH₂ of azabicyclooctane), 2.90 (3H, s, CH₃), 3.26 (2H, s, CH₃-N-C<u>H₂</u>), 6.83 (1H, ddd, J=8, 7, 1 Hz, aromatic H), 7.25 (1H, dd, J=7, 1 Hz, aromatic H), 7.36 (1H, ddd, J=8, 7, 1 Hz, aromatic H), 7.71 (1H, dd, J=7, 1 Hz, aromatic H). CIMS m/z: 276 ((M+1)⁺), 110 (base peak).

N-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-*N*-methyl-4-nitroaniline (9e) In a similar manner to that described in procedure D, a suspension of 7c (1.27 g, 8.06 mmol), 8b (2.50 g, 16.2 mmol) and NaI (50.0 mg) in pyridine was refluxed for 12 h to give 780 mg (35.1%) of 9e as a yellow oil. IR (neat) cm⁻¹: 2956, 1595, 1310. ¹H-NMR (CDCl₃) δ : 1.52—1.80 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.60 and 2.96 (each 2H, dt, *J*=11, 6 Hz, 2,8-CH₂ of azabicyclooctane), 3.20 (3H, s, CH₃), 3.41 (2H, s, CH₃-N-CH₂), 6.73 (2H, d, *J*=9 Hz, aromatic H), 8.09 (2H, d, *J*=9 Hz, aromatic H). CIMS *m/z*: 276 ((M+1)⁺), 110 (base peak).

N-[2-(1-Azabicyclo]3.3.0]octan-5-yl)ethyl]-2-nitroaniline (9f) In a similar manner to that described in procedure D, a mixture of **7b** (2.04 g, 12.9 mmol), 5-(2-aminoethyl)-1-azabicyclo[3.3.0]octane (8c) (4.00 g, 25.9 mmol) and pyridine (40.0 ml) was refluxed for 12 h to give 3.32 g (93.5%) of **9f** as a yellow oil. IR (neat) cm⁻¹: 3382, 2954, 1619, 1514. ¹H-NMR (CDCl₃) δ : 1.61—1.85 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and NH-CH₂C<u>H₂</u>), 2.62 and 3.07 (each 2H, dt, *J*=11, 6 Hz, 2,8-CH₂ of azabicyclooctane), 3.33—3.40 (2H, m, NH-CH₂), 6.58 (1H, ddd, *J*=9, 7, 2 Hz, aromatic H), 8.16 (1H, dd, *J*=9, 2 Hz, aromatic H), 7.40 (1H, ddd, *J*=9, 7, 2 Hz, aromatic H), 8.16 (1H, dd, *J*=9, 2 Hz, aromatic H), 9.19 (1H, br s, NH). EIMS m/z: 275 (M⁺), 110 (base peak).

N-[2-(1-Azabicyclo[3.3.0]octan-5-yl)ethyl]-4-nitroaniline (9g) In a similar manner to that described in procedure D, a solution of 7c (2.04 g, 12.9 mmol) and 8c (4.00 g, 25.9 mmol) in pyridine (40.0 ml) was stirred in a sealed tube at 120 °C for 36 h to give 2.93 g (82.5%) of 9g as a yellow oil. IR (neat) cm⁻¹: 3374, 2955, 1602, 1310. ¹H-NMR (CDCl₃) δ : 1.61–1.83 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and NH-CH₂CH₂), 2.63 and 3.00 (each 2H, dt, *J*=11, 6 Hz, 2,8-CH₂ of azabicyclooctane), 3.27 (2H, t, *J*=6 Hz, NH-CH₂), 6.44 (2H, d, *J*=9 Hz, aromatic H), 7.76 (1H, br s, NH), 8.06 (2H, d, *J*=9 Hz, aromatic H). EIMS *m/z*: 275 (M⁺), 110 (base peak).

N-[2-(1-Azabicyclo[3.3.0]octan-5-yl)ethyl]-*N*-methyl-2-nitroaniline (9h) In a similar manner to that described in procedure D, a solution of 7b (1.87 g, 11.9 mmol) and 5-(2-methylaminoethyl)-1-azabicyclo[3.3.0]octane (8d) (4.00 g, 23.8 mmol) in pyridine (40.0 ml) was stirred in a sealed tube at 125 °C for 18 h to give 2.95 g (85.7%) of 9h as a yellow oil. IR (neat) cm⁻¹: 2953, 1606, 1514. ¹H-NMR (CDCl₃) δ : 1.51—1.81 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and CH₃-NH-CH₂CH₂), 2.58 and 2.96 (each 2H, dt, *J*=10, 6 Hz, 2,8-CH₂ of azabicyclooctane), 2.81 (3H, s, CH₃), 3.18—3.24 (2H, m, NH-C<u>H₂)</u>, 6.83 (1H, t, *J*=8 Hz, aromatic H), 7.11 (1H, d, *J*=8 Hz, aromatic H), 7.38 (1H, t, *J*=8 Hz, aromatic H), 7.70 (1H, d, *J*=8 Hz, aromatic H). EIMS *m/z*: 289 (M⁺), 110 (base peak).

N-[2-(1-Azabicyclo[3.3.0]octan-5-yl)ethyl]-*N*-methyl-4-nitroaniline (9i) In a similar manner to that described in procedure D, a solution of 7c (1.87 g, 11.9 mmol) and 8d (4.00 g, 23.8 mmol) in pyridine (40.0 ml) was stirred in a sealed tube at 125 °C for 30 h to give 2.15 g (62.4%) of 9i as a yellow oil. IR (neat) cm⁻¹: 2953, 1595, 1290. ¹H-NMR (CDCl₃) δ : 1.59—1.85 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and CH₃-N-CH₂CH₂), 2.63 and 3.01 (each 2H, dt, *J*=11, 6 Hz, 2,8-CH₂ of azabicyclooctane), 3.05 (3H, s, CH₃), 3.48—3.54 (2H, m, CH₃-NH-CH₂), 6.63 (2H, d, *J*=10 Hz, aromatic H). EIMS *m/z*: 289 (M⁺), 110 (base peak).

N-[2-(1-Azabicyclo[3.3.0]octan-5-yl)ethyl]-4-fluoro-2-nitroaniline (9j) In a similar manner to that described in procedure D, a reaction of 2,5-difluoronitrobenzene (7d) (1.00 g, 6.28 mmol) and 8c (2.42 g, 15.7 mmol) in pyridine (15.0 ml) at 45 °C for 1 h gave 2.00 g (99.8%) of 9j as a yellow oil. IR (neat) cm⁻¹: 3380, 1520, 1180. ¹H-NMR (CDCl₃) δ : 1.63—1.84 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and NH-CH₂CH₂), 2.61—2.65 and 3.02— 3.08 (each 2H, m, 2-CH₂ of azabicyclooctane), 3.33—3.36 (2H, m, NH-CH₂), 6.82 (1H, dd, *J*=9, 5 Hz, aromatic H), 7.22 (1H, ddd, *J*=9, 4, 3 Hz, aromatic H), 7.87 (1H, dd, *J*=9, 3 Hz, aromatic H), 9.25 (1H, br s, NH). EIMS *m/z*: 293 (M⁺), 110 (base peak).

N-[2-(1-Azabicyclo[3.3.0]octan-5-yl)ethyl]-4-methoxy-2-nitroaniline (9k) In a similar manner to that described in procedure D, a solution of 2chloro-5-methoxynitrobenzene (7e) (1.00 g, 5.33 mmol) and 8c (1.65 g, 10.7 mmol) in pyridine (15.0 ml) was stirred in a sealed tube at 150 °C for 2 d to give 1.04 g (63.9%) of 9k as a red powder, mp 38—41 °C. IR (KBr) cm⁻¹: 3278, 2950, 1523. ¹H-NMR (CDCl₃) δ : 1.59—1.85 (10H, m, 3.4,6,7-CH₂ of azabicyclooctane and NH-CH₂CH₂), 2.58—2.67 and 3.02—3.11 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 3.33—3.40 (2H, m, NH-C<u>H₂)</u>, 3.79 (3H, s, CH₃), 6.83 (1H, d, J=9 Hz, aromatic H), 7.13 (1H, dd, J=9, 3 Hz, aromatic H), 7.62 (1H, d, J=3 Hz, aromatic H), 9.04 (1H, br s, NH). EIMS m/z: 305 (M⁺), 110 (base peak).

2-(1-Azabicyclo[3.3.0]octan-5-yl)methylaminobenzonitrile (9I) In a similar manner to that described in procedure D, a solution of 2-fluorobenzonitrile (**7f**) (671 mg, 5.54 mmol) and **8a** (1.94 g, 13.9 mmol) in pyridine (8.00 ml) was stirred in a sealed tube at 180 °C for 15 h to give 1.26 g (94.2%) of **9l** as a colorless oil. IR (neat) cm⁻¹: 3346, 2955, 1606, 1511. ¹H-NMR (CDCl₃) δ : 1.63—1.86 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.62—2.68 and 2.99—3.11 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 2.99 (2H, d, *J*=5 Hz, NH-CH₂), 5.25 (1H, br s, NH), 6.59—6.65 (2H, m, aromatic H), 7.34—7.37 (2H, m, aromatic H). CIMS *m/z*: 242 ((M+1)⁺, base peak).

4-(1-Azabicyclo[3.3.0]octan-5-yl)methylaminobenzonitrile (9m) In a similar manner to that described in procedure D, a solution of 4-fluorobenzonitrile (**7g**) (1.00 g, 8.26 mmol) and **8a** (2.31 g, 16.5 mmol) in pyridine (10.0 ml) was stirred in a scaled tube at 180 °C for 5 h to give 1.89 g (95.0%) of **9m** as a colorless oil. IR (neat) cm⁻¹: 3368, 2956, 2211, 1606, 1526. ¹H-NMR (CDCl₃) δ : 1.60—1.89 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.62—2.68 and 2.97—3.06 (each 2H, m, 2.8-CH₂ of azabicyclooctane), 2.97 (2H, d, J=5 Hz, NH-CH₂), 4.85 (1H, br s, NH), 6.56 (2H, d, J=9 Hz, aromatic H), 7.39 (2H, d, J=9 Hz, aromatic H). CIMS *m/z*: 242 ((M+1)⁺, base peak).

2-[*N*-(1-Azabicyclo[3.3.0]octan-5-yl)methyl-*N*-methylamino]benzonitrile (9n) In a similar manner to that described in procedure D, a solution of 7f (1.00 g, 8.26 mmol) and 8b (2.55 g, 16.5 mmol) in pyridine (10.0 ml) was stirred in a sealed tube at 180 °C for 5 h to give 790 mg (37.4%) of 9n as a colorless oil. IR (neat) cm⁻¹: 2954, 2209, 1597, 1500. ¹H-NMR (CDCl₃) δ : 1.55—1.88 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.53—2.62 and 2.95—3.03 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 3.20 (3H, s, CH₃), 3.37 (2H, d, *J*=5 Hz, NH-CH₂), 6.80 (1H, t, *J*=8 Hz, aromatic H), 7.03 (1H, d, *J*=8 Hz, aromatic H), 7.37 (1H, t, *J*=8 Hz, aromatic H), 7.47 (1H, d, *J*=8 Hz, aromatic H). CIMS *m/z*: 256 ((M+1)⁺, base peak).

2-[2-(1-Azabicyclo[3.3.0]octan-5-yl)ethylamino]benzonitrile (90) In a similar manner to that described in procedure D, a solution of **7f** (1.00 g, 8.26 mmol) and **8c** (3.15 g, 20.4 mmol) in pyridine (10.0 ml) was stirred in a sealed tube at 180 °C for 10.5 h to give 2.02 mg (95.8%) of **90** as a colorless oil. IR (neat) cm⁻¹: 3170, 2955, 2209, 1606, 1517. ¹H-NMR (CDCl₃) δ : 1.59—1.80 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and NH-CH₂CH₂), 2.58—2.65 and 3.07—3.13 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 3.22 (2H, t, *J*=6 Hz, NH-CH₂), 6.53—6.58 (2H, m, aromatic H), 7.31—7.35 (2H, m, aromatic H), 8.00 (1H, br s, NH). EIMS *m/z*: 255 (M⁺), 110 (base peak).

4-[2-(1-Azabicyclo[3.3.0]octan-5-yl]ethylamino]benzonitrile (9p) In a similar manner to that described in procedure D, a solution of 7g (1.00 g, 8.26 mmol) and 8c (2.55 g, 16.5 mmol) in pyridine (10.0 ml) was stirred in a

sealed tube at 180 °C for 5 h to give 2.09 mg (99.1%) of **9p** as a colorless oil. IR (neat) cm⁻¹: 3371, 2955, 2210, 1608, 1527. ¹H-NMR (CDCl₃) δ : 1.55— 1.84 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and NH-CH₂C<u>H₂</u>), 2.55— 2.63 and 2.92—3.02 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 3.20 (2H, t, *J*=6 Hz, NH-C<u>H₂</u>), 6.49 (2H, d, *J*=9 Hz, aromatic H), 7.13 (1H, br s, NH) 7.38 (2H, d, *J*=9 Hz, aromatic H). EIMS *m/z*: 255 (M⁺), 110 (base peak).

2-{*N*-[**2-**(**1-**Azabicyclo[**3.3.0**]octan-**5-**yl)ethyl]-*N*-methylamino}benzonitrile (**9q**) In a similar manner to that described in procedure D, a solution of **7f** (800 mg, 6.61 mmol) and **8d** (2.78 g, 16.5 mmol) in pyridine (8.00 ml) was stirred in a sealed tube at 130 °C for 5.5 h to give 2.16 g (99.7%) of **9q** as a colorless oil. IR (neat) cm⁻¹: 2954, 2212, 1597, 1492. ¹H-NMR (CDCl₃) δ : 1.55—1.78 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and N-CH₂CH₂), 2.56—2.60 and 2.95—3.05 (each 2H, m, 2,8-CH₂ of azabi cyclooctane), 2.98 (3H, s, CH₃), 3.38—3.44 (2H, m, CH₃-N-CH₂), 6.81 (1H, t, *J*=9 Hz, aromatic H), 6.93 (1H, d, *J*=9 Hz, aromatic H), 7.48 (1H, t, *J*=9 Hz, aromatic H), 7.50 (1H, d, *J*=9 Hz, aromatic H). CIMS *m/z*: 270 ((M+1)⁺, base peak).

Procedure E. 2-[(1-Azabicyclo[3.3.0]octan-5-yl)methylamino]benzamide (9r) A solution of **9I** (1.80 g, 7.46 mmol) in 93% H₂SO₄ (125 g) was stirred at 60 °C for 3 h. After being cooled at -78 °C, the resulting mixture was alkalized with 25% ammonia–water (500 ml), and extracted with AcOEt (750 ml). The solution was washed with brine (500 ml), dried, and concentrated *in vacuo*. The residue was recrystallized with AcOEt to give 1.38 g (71.5%) of **9r** as colorless crystals, mp 163—165 °C. IR (KBr) cm⁻¹: 3320, 2830, 1624, 1522. ¹H-NMR (CDCl₃) δ : 1.59—1.97 (8H, m, 3,4,6,7-CH₂ of azabicyclooctane), 2.61—2.69 and 3.08—3.16 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 3.03 (2H, d, J=5 Hz, NH-C<u>H₂</u>), 5.78 (2H, br s, CONH₂), 6.54 (1H, t, J=7 Hz, aromatic H), 6.68 (1H, d, J=8 Hz, aromatic H), 7.30 (1H, t, J=7 Hz, aromatic H), 7.36 (1H, d, J=8 Hz, aromatic H), 7.99 (1H, br s, NH). CIMS *m*/*z*: 260 ((M+1)⁺, base peak).

2-[2-(1-Azabicyclo]3.3.0]octan-5-yl]ethyl]aminobenzamide (9s) A reaction of **9o** (1.34 g, 5.25 mmol) in 93% H_2SO_4 (106 g) at 110 °C for 2 h gave 961 mg (67.0%) of **9s** as colorless crystals, mp 145—147 °C. IR (KBr) cm⁻¹: 3314, 3148, 1676, 1521. ¹H-NMR (CDCl₃) δ : 1.56—1.82 (10H, m, 3,4,6,7-CH₂ of azabicyclooctane and NH-CH₂CH₂), 2.55—2.64 and 3.02—3.06 (each 2H, m, 2,8-CH₂ of azabicyclooctane), 3.20 (2H, t, *J*=8 Hz, NH-CH₂-CH₂), 5.96 (2H, br s, CONH₂), 6.54 (1H, t, *J*=7 Hz, aromatic H), 6.70 (1H, d, *J*=8 Hz, aromatic H), 7.80 (1H, br s, NH). EIMS *m/z*: 273 (M⁺), 110 (base peak).

Preparation of Rat Brain Homogenate Sprague–Dawley male rats were sacrificed by decapitation, and their brains were excised. The cerebral cortex and the cerebellum were homogenized, respectively, in 10 volumes of ice-cold buffer (0.32 M sucrose) in a Potter–Elvehjem glass homogenizer. The resulting homogenate was centrifuged at $1000 \times g$ for 10 min at 4 °C, the precipitate was removed, and the supernatant was recentrifuged at $40000 \times g$ for 15 min at 4 °C. The pellets thus obtained were washed with each assay buffer by resuspension and recentrifugation. The membrane preparation was stored at -70 °C until required.

[³H]Pirenzepine Binding Inhibition An assay for M₁ receptors was performed according to the method of Flynn and Mash.¹⁰⁾ Frozen rat cerebral cortex membrane was resuspended in an assay buffer (50 mM phosphate buffer, pH 7.4). The membrane suspension, corresponding to 0.6 mg of protein determined by the method of Lowry with bovine serum albumin as the standard, was incubated with approximately 1.0 nm [³H]pirenzepine at 25 °C for 60 min. Test compounds were added in a volume of 1ml to give a final assay volume of 2.0 ml. Nonspecific binding was determined using $1 \,\mu$ M atropine. Assays were terminated by the addition of 3 ml of the chilled assay buffer and by rapid filtration under vacuo through Whatman GF/B filter paper which had been previously impregnated with a 0.1% polyethyleneimine solution for 60 min. The filters were washed immediately two times with 3 ml each of the assay buffers. The filter was placed in a scintillation vial, to which 4 ml of ACSII cocktail was added. Radioactivity retained on the filter paper was determined by liquid scintillation counter. All assays were performed in duplicate or triplicate. Competition binding data were analyzed by logic-log analysis to provide the inhibitory concentration (IC₅₀) value of the test compound on ³H-pirenzepine binding to M₁ receptor.

 $[{}^{3}$ H]Quinuclidinyl benzilate (QNB) Binding Inhibition The assay for M_2 receptors was performed according to the method of Yamamura and Snyder.¹¹⁾ A frozen rat cerebellum membrane was resuspended in the assay buffer (50 mM phosphate buffer, pH 7.4). The membrane preparation, corresponding to 0.6 mg of protein determined by the method of Lowry et al.,¹²⁾ was incubated with approximately 1.0 nM [3 H]QNB at 25 °C for 60 min. Test

compounds were added in a volume of 1 ml to give a final assay volume of 2.0 ml. Non-specific binding was determined using 1 μ M QNB. The estimation of filter-bound radioactivity and the data analysis to obtain the IC₅₀ of the test compound on [³H]QNB binding to M₂ receptors were similar to those in the case of [³H]pirenzepine binding.

Reference Compounds (-), (\pm) -YM796 and SR56559 were synthesized at our laboratory. YM796 was prepared as a fumarate salt.

Passive Avoidance Performance in Scopolamine-Treated Mice A passive avoidance learning test using mice was conducted to examine whether a scopolamine-induced passive avoidance deficit can be improved by the compounds of the present invention.

A training box composed of a light room and a dark room, which both had the same structure, was used. The dark room was designed so that a foot shock is given to a test animal *via* grids of the floor. An opening is provided on the partitioning wall of the two rooms to let animals in and out freely.

The animal was put in the light room. Immediately after the animal moved into the dark room, a foot shock was given until the animal returned to the light room (acquisition trial). After 24 h from the training, the animal was again put in the light room, and the time required for the animal's moving to the dark room was measured up to 300 s (retention test).

Scopolamine hydrobromide dissolved in physiological saline was administered i.p. to a mouse at a dose of 0.25 mg/kg 15 min before the acquisition trial. Five minutes after the scopolamine administration, a test compound was administered *p.o.* to the mouse.

The data from the retention test were analyzed to obtain a percent prolongation of the avoidance of the test group based on that of the saline-treated control group.

Biochemical Assays Using Rat Primary Cultured Cells Hippocampal neurons were isolated from rat embryos of day 18 gestation by a trypsin treatment following the protocol of Banker and Cowan,¹³⁾ and were maintained for 5–7 d in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum. To suppress any growth of the glial cells, the culture was treated with 10 μ M cytosine arabinofuranoside for 24 h on the 5th day.

The rate of hydrolysis of inositol phospholipids (PI break down) was assayed in hippocampal neuronal cells, as described previously.¹⁴⁾ Neuronal cells were incubated with Hank's balanced salt solution containing 1 μ Ci/ml [³H]-*myo*-inositol for 24 h. After washing the inositol-loaded cells, cultures were incubated with 10 mM LiCl and test drugs (all in Kreb's Henseleit bicarbonate buffer containing 20 mM KCl) for 60 min. Inositol phosphate (IP) production was expressed as [³H]IP/([³H]IP+incorporated [³H]-*myo*-inositol)%.

 $[^{3}H]$ -myo-inositol incorporation in hippocampal neuronal cells was estimated in cultures incubated with $[^{3}H]$ -myo-inositol and the drug in Kreb's Henseleit bicarbonate buffer containing 5 mM KCl without LiCl for 24 h.

Acknowledgment We are grateful to Dr. T. Ikami and Mr. H. Hamajima for elemental analysis and mass spectral measurements.

References

- Suzuki T., Oka M., Maeda K., Furusawa K., Mitani T., Kataoka T., *Chem. Pharm. Bull.*, 45, 1218—1220 (1997).
- 2) Ejner K. M., Berith B., Drug Fut., 20, 37-54 (1995).
- Iversen L. L., Mortishire-Smith R. J., Pollack S. J., Shearman M. S., Biochem. J., 311, 1–16 (1995).
- Bartus R. T., Dean R. L., Beer B., Lippa A. S., Science, 217, 408–417 (1982).
- Tsukamoto S., Fujii M., Yasunaga T., Matsuda K., Wanibuchi F., Hidaka A., Furuya T., Tamura T., *Chem. Pharm. Bull.* 43, 842–852 (1995); Wanibuchi F., Konishi T., Harada M., Terai M., Hidaka K., Tamura T., Tsukamoto S., Usuda S., *European J. Pharmacol.*, 187, 479–486 (1990).
- 6) Wermuth C. G., Bourguignon J.-J., Hoffmann R., Boigegrain R., Brodin R., Kan J.-P., Soubrie P., *Bio. Med. Chem. Lett.*, **2**, 833–838 (1992); Kan J. P., Steinberg R., Oury-Donat F., Michaud J. C., Thurneyssen O., Terranova J. P., Gueudet C., Souilhac J., Brodin R., Boigegrain R., Wermuth C. G., Worms P., Soubrie P., Fur G. L., *Psychopharmacology*, **112**, 219–227 (1993).
- Messer W. S., Jr., Bohnett M. S., Stibbe J., *Neurosci. Lett.*, **116**, 184– 189 (1990).
- Suzuki T., Toshinao U., Mitsuru O., Tunemasa S., Kataoka T., Chem. Pharm. Bull., 46, 1265–1273 (1998).
- Miyano S., Mibu N., Irie M., Fujii S., Fujisaka F., Abe N., Sumoto K., J. Chem. Soc., Perkin Trans. 1, 1987, 313–316; Miyano S., Irie M.,

Mibu N., Miyamoto Y., Nagata K., Sumoto K., J. Chem. Soc., Perkin Trans. 1, 1988, 1057–1063.

- 10) Flynn D. D., Mash D. C., J. Pharmacol. Exp. Ther., 250, 573–581
- (1989).11) Yamamura H. I., Snyder S. H., *Proc. Natl. Acad. U. S. A.*, **71**, 1725—

1729 (1974).

- 12) Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J., J. Biol. Chem., 193, 265—275 (1951).
- 13) Banker G. A., Cowan W. M., Brain Res., 126, 397-402 (1977).
- 14) Lenox R. H., Hendly D., Ellis J., J. Neurochem., 50, 558-564 (1988).