Dihydroisocoumarin Constituents from the Leaves of *Hydrangea* macrophylla var. thunbergii (2).¹⁾: Absolute Stereostructures of Hydrangenol, Thunberginol I, and Phyllodulcin Glycosides and Isomerization Reaction at the 3-Positions of Phyllodulcin and Its Glycosides

Masayuki Yoshikawa,* Tomohiko Ueda, Hiroshi Shimoda, Toshiyuki Murakami, Johji Yamahara, and Hisashi Matsuda

Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607–8414, Japan. Received October 15, 1998; accepted December 10, 1998

Following the characterization of 3S-phyllodulcin, 3R- and 3S-phyllodulcin 3'-O-glucosides, and 3R- and 3Sthunberginol H 8-O-glucosides, six new dihydroisocoumarin glycosides, 3R- and 3S-hydrangenol 4'-O-apiosylglucosides, 3R- and 3S-thunberginol I 4'-O-glucosides, thunberginol I 8-O-glucoside, and 3S-phyllodulcin 8-O-glucoside, were isolated from the dried leaves of *Hydrangea macrophylla* var. *thunbergii* and their structures were determined on the basis of chemical and physicochemical evidence. In addition, isomerization reaction at the 3positions of phyllodulcin and its glycosides was examined.

Key words thunberginol I glycoside; hydrangenol glycoside; Hydrangea macrophylla var. thunbergii; dihydroisocoumarin glycoside; dihydroisocoumarin 3-isomerization; Hydrangeae Dulcis Folium

In the course of our studies on bioactive constituents of natural medicines²⁾ and medicinal foodstuffs,³⁾ we have reported the isolation and structure elucidation of antiallergic and antimicrobial principles such as thunberginols A,⁴ B,⁴ $C_{,5}^{(5)}$ $D_{,5}^{(5)}$ $E_{,5}^{(5)}$ and $F_{,4}^{(4)}$ thunberginol G 3'-O-glucoside,⁵⁾ and hydramacrophyllols A⁶⁾ and B⁶⁾ from Hydrangeae Dulcis Folium, the processed leaves of Hydrangea macrophylla SERINGE var. thunbergii MAKINO (Saxifragaceae). We have found two secoiridoid glucoside complexes, hydramacrosides A^{7} and B^{7} , and four dihydroisocoumarin glycosides,¹⁾ 3*R*and 3S-phyllodulcin 3'-O-glucosides, 3R- and 3S- thunberginol H 8-O-glucosides, from the dried leaves of this plant. Furthermore, phyllodulcin from the dried leaves was found to be *ca*. 5:1 enantiomer mixture at the 3-position.¹⁾ As a continuation of this study, we have isolated six new dihydroisocoumarin glycosides called 3R- and 3S-hydrangenol 4'-O-apiosylglucosides (1, 2), 3R- and 3S-thunberginol I 4'-O-glucosides (3, 4), thunberginol I 8-O-glucosides (5), and 3S-phyllodulcin 8-O-glucoside (6). This paper deals with the structure elucidation of these six new dihydroisocoumarin glycosides (1-6) and the isomerization reaction at the 3-positions of phyllodulcin and its glycosides.

3*R***- and 3***S***- Hydrangenol 4'-O-Apiosylglucosides** 3*R*hydrangenol 4'-O-apiosylglucoside (1) was isolated as a white powder of negative optical rotation $([\alpha]_D^{25} - 23.9^\circ)$. The IR spectrum of **1** showed absorption bands ascribable to hydroxyl, chelated δ -lactone, and aromatic ring at 3570, 1670, and 1618 cm⁻¹, while absorption maxima (log ε) were observed at 245 (3.2) and 314 (2.9) nm. In the positive-ion FAB-MS of **1**, a quasimolecular ion peak was observed at m/z 573 (M+Na)⁺ and the molecular formula C₂₆H₃₀O₁₃ of **1** was confirmed by high-resolution MS measurement of the quasimolecular ion peak. The ¹H-NMR (DMSO-*d*₆) and ¹³C-NMR (Table 1) spectra of **1** showed signals assignable to a hydrangenol moiety [δ 5.73 (dd, *J*=3.1, 12.1 Hz, 3-H), 6.87 (d, *J*=6.9 Hz, 5-H), 6.90 (d, *J*=8.1 Hz, 7-H), 7.53 (dd, *J*=6.9, 8.1 Hz, 6-H); δ 7.09 (d, *J*=8.6 Hz, 3', 5'-H), 7.47 (d, *J*=

* To whom correspondence should be addressed.

8.6 Hz, 2', 6'-H), 10.92 (1H, br s, 8-OH)], a β -D-glucopyranosyl moiety [δ 4.85 (d, J=7.5 Hz, 1"-H)], and β -D-apiofuranosyl moiety [δ 4.83 (d, J=3.0 Hz, 1^{'''}-H)]. Comparison of the NMR data for 1 with those of hydrangenol $(7)^{5}$ and 3*R*hydrangenol 4'-O-glucoside $(9)^{5}$ allowed us to presume the structure of 1 to be the β -D-apiofuranoside of 9. The position of the apioside linkage was characterized by a nuclear Overhauser effect (NOE) spectroscopy (NOESY) experiment on 1. which showed NOE correlations between the anomeric proton (1^{""}-H) of the β -D-apiofuranosyl moiety and the 6["]protons of the β -D-glucopyranosyl moiety. Furthermore, a glycosidation shift was observed around the 6"-carbon in the ¹³C-NMR data of **1**. The absolute configuration at the 3-position in 1 was identified by the circular dichroism (CD) spectrum, which showed the characteristic CD curve for 3R-dihydroisocoumarin⁸⁾ ($[\theta]_{257}$ +2200, $[\theta]_{226}$ -3000, $[\theta]_{221}$ -5800). Acid hydrolysis of 1 with 5% aqueous sulfuric acid-dioxane (1:1) liberated D-apiose and D-glucose, which were identified by GLC analysis of the trimethylsilyl thiazolide derivatives.⁹⁾ Finally, partial methanolysis of 1 with 3% hydrogen chloride in dry methanol furnished 3R-hydrangenol 4'-Oglucosides (9).⁵⁾ On the basis of this evidence, the structure of 1 was determined to be 3*R*-hydrangenol 4'-O- β -D-apiofuranosyl $(1\rightarrow 6)$ - β -D-glucopyranoside.

3*S*-Hydrangenol 4'-*O*-apiosylglucoside (**2**) was also isolated as a white powder of negative optical rotation ($[\alpha]_D^{25}$ -88.6°). The molecular formula C₂₆H₃₀O₁₃, which was the same as that of **1**, was confirmed from the quasimolecular ion peak at *m*/*z* 573 (M+Na)⁺ in the positive-ion FAB-MS and by high-resolution MS measurement. The UV and IR spectra of **2** were found to be very similar to those of **1**. Comparison of the ¹H- and ¹³C-NMR (Table 1) for **2** with those for **1** led us to presume the structure of **2** as the 3epimer of **1**. The CD spectrum of **2** showed the characteristic pattern of the 3*S*-configuration⁸ ($[\theta]_{258}$ -4800, $[\theta]_{239}$ +3200, $[\theta]_{226}$ -1700). Acid hydrolysis of **2** liberated D-glucose and D-apiose,⁹ while treatment of **2** with 3% hydrogen chloride

© 1999 Pharmaceutical Society of Japan

3S-hydrangenol 4'-O-apiosylglucoside (2)

3S-thunberginol I 4'-O-glucoside (4)

3R-hydrangenol 4'-O-apiosylglucoside (1)

3R-thunberginol E4'-O-glucoside (3)

OCH3

HO

HO

НĊ

thunberginol I 8-O-glucoside (5)

3S-phyllodulcin 8-O-glucoside (6)

Chart 1

3R-hydrangenol 4'-O-glucoside (9)

3R-phyllodulcin (11) : $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{H}$ 3*R*-phyliodulcin 8-*O*-glucoside (12) : R^1 -Glc, R^2 -H 3R-phyllodulcin 3'-O-glucoside (13) : R^1 =H, R^2 =Glc

3S-hydrangenol 4'-O-glucoside (10)

3S-phyllodulcin (14) : R=H 3S-phyllodulcin 3'-O-glucoside (15) : R=Gic

 $Glc:\beta\text{-}D\text{-}glucopylanosyl$

Table 1. ¹³C-NMR Data of **1**, **2**, **3**, **4** and **5**

	1	2	3	4	5
C-1	169.1	169.1	169.1	169.0	161.2
C-3	80.0	80.1	80.2	80.2	78.3
C-4	33.4	33.6	33.5	33.6	35.1
C-4a	140.4	140.4	140.4	140.4	141.6
C-5	118.3	118.3	118.2	118.1	120.7
C-6	136.3	136.3	136.3	136.2	134.5
C-7	115.5	115.4	115.4	115.5	128.3
C-8	160.9	160.9	161.0	161.0	158.4
C-8a	108.4	108.4	108.3	108.4	114.3
C-1′	131.4	131.5	131.7	131.7	131.3
C-2'	128.0	128.0	114.9	114.9	111.9
C-3'	116.1	116.1	146.6	146.6	146.4
C-4'	157.6	157.5	148.8	148.8	147.7
C-5'	116.1	116.1	111.0	111.1	117.5
C-6′	128.0	128.0	119.0	119.0	113.9
3'-OCH ₃			55.6	55.6	
4'-OCH ₃					55.7
Glc-1"	100.3	100.2	99.7	99.7	100.6
2″	73.1	73.1	73.0	73.1	73.2
3″	76.4	75.6	76.9	76.9	77.2
4″	69.9	69.9	69.5	69.5	69.7
5″	75.7	75.8	76.7	76.7	76.6
6"	67.7	67.7	60.5	60.5	60.7
Api-1‴	109.2	109.2			
2‴	78.6	78.5			
3‴	78.6	78.5			
4‴	75.5	75.5			
5‴	62.9	62.9			

The spectra were taken with DMSO- d_6 .

in dry methanol liberated 3S-hydrangenol 4'-O-glucoside (10). Consequently, the structure of 3S-hydrangenol 4'-O-apiosylglucoside (2) was characterized as shown.

3*R***- and 3***S***-Thunberginol I 4'-***O***-Glucosides 3***R***- and 3***S***-thunberginol I 4'-***O***-glucosides (3**, **4**) were isolated as white powders of positive and negative optical rotations $([\alpha]_D^{25} + 15.5^\circ, -11.9^\circ)$, respectively. Their IR spectra were similar to each other and showed absorption bands due to hydroxyl, chelated δ -lactone, and aromatic ring. The UV spectra of **3** and **4** showed absorption maxima suggestive of the dihydroisocoumarin structure. The compounds (**3**, **4**) were found to have the same molecular formula $C_{22}H_{24}O_{10}$, which was identified from the quasimolecular ion peaks at m/z 449 (M+H)⁺ and m/z 471 (M+Na)⁺ in their positive-ion FAB-MS and by high-resolution MS analysis. Acid hydrolysis of **3** and **4** liberated D-glucose.⁹

The ¹H-NMR (DMSO- d_6) and ¹³C-NMR (Table 1) spectra of **3** showed the presence of two trisubstituted benzene rings [δ 6.87 (d, J=7.3 Hz, 5-H), 6.90 (d, J=8.1 Hz, 7-H), 7.53 (dd, J=7.3, 8.1 Hz, 6-H); δ 7.01 (dd, J=1.7, 8.5 Hz, 6'-H), 7.12 (d, J=8.5 Hz, 5'-H), 7.18 (d, J=1.7 Hz, 2'-H)], a chelated 8-hydroxyl and δ -lactone [δ 5.71 (dd, J=3.0, 11.9 Hz, 3-H), 10.91 (br s, 8-OH)], a methoxyl group [δ 3.80 (s, 3'-OCH₃)], and a β -D-glucopyranosyl moiety [δ 4.94 (d, J=7.2 Hz, 1"-H)]. The positions of the glucoside linkage and the methoxyl group were elucidated by the NOESY experiment, in which NOE correlations were observed between the anomeric proton (1"-H) of the β -D-glucopyranosyl moiety and the 5'-proton and between the methoxyl protons and the 2'-proton. On the basis of this evidence and examination of the CD spectrum of **3**, which showed the characteristic CD curve for the 3*R*-dihydroisocoumarin⁸⁾ ($[\theta]_{256}$ +10000, $[\theta]_{240}$ -5000), the structure of 3*R*-thunberginol I 4'-O-glucoside was determined to be 3*R*-(3'-O-methoxy-4'-O- β -D-glucopy-ranosylphenyl)-8-hydroxydihydroisocoumarin (3).

The ¹H- and ¹³C-NMR (Table 1) spectra of **4** were found to be superimposable on those of **3** and the NOESY experiment on **4** showed the same NOE correlations as those of **3**. This evidence revealed that **4** was the epimer of **3** at the 3-position. The CD spectrum of **4** showed the characteristic CD curve for the 3*S*-dihydroisocoumarin (**8**) ($[\theta]_{255}$ -8300, $[\theta]_{240}$ +4800) and consequently, the structure of 3*S*-thunberginol I 4'-*O*-glucoside (**4**) was determined as shown.

Thunberginol I and 3S-Phyllodulcin 8-O-Glucosides Thunberginol I 8-O-glucoside (5) was obtained as a white powder and shown to be a 3-epimeric mixture by examination of the ¹H- and ¹³C-NMR spectra. Since the 3-position in 5 showed tautomer-like behavior during the separation procedure, we could not separate the 3-epimers of 5. The IR spectrum of 5 showed absorption bands ascribable to hydroxyl, δ -lactone, and benzene ring at 3325, 1713, and 1601 cm⁻ while its UV spectrum showed absorption maxima (log ε) at 226 (4.1) and 287 (3.6) nm, suggestive of the dihydroisocoumarin structure. The molecular formula, C₂₂H₂₄O₁₀, which was the same as that of 3 or 4, was determined from the positive-ion FAB-MS $[m/z 471 (M+Na)^+]$ and by highresolution MS measurement. On acid hydrolysis of 5, D-glucose was detected.⁹⁾ The ¹H-NMR spectrum of **5** showed two pairing signals due to a thunberginol I moiety and a β -D-glucopyranosyl moiety. In the NOESY experiment on 5, NOE correlations were observed between the anomeric proton (1"-H) and the 7-proton and between the methoxyl protons and the 2'-proton. Consequently, the structure of thunberginol I 8-O-glucoside (5) was characterized as shown.

3S-Phyllodulcin 8-O-glucoside (6), also isolated as a white powder of negative optical rotation ($[\alpha]_{\rm D}^{25}$ -121.3°), showed absorption bands due to hydroxyl, δ -lactone, aromatic ring in the IR spectrum. The molecular formula $C_{22}H_{24}O_{10}$ of 6 was determined from the quasimolecular ion peak at m/z 449 $(M+H)^+$ and by high-resolution MS measurement. The ¹H-NMR (DMSO- d_6) spectrum of **6** showed signals assignable to a phyllodulcin moiety [δ 3.76 (s, 4'-OCH₃), 5.39 (dd, J= 3.0, 10.9 Hz, 3-H), 6.85 (dd, J=1.8, 8.4 Hz, 6'-H), 6.91 (d, J=1.8 Hz, 2'-H), 6.93 (d, J=8.4 Hz, 5'-H), 7.02 (d, J=7.4 Hz, 5-H), 7.18 (d, J=8.4 Hz, 7-H), 7.52 (dd, J=7.4, 8.4 Hz, 6-H)] and a β -D-glucopyranosyl moiety [δ 4.94 (d, J=7.2 Hz, 1"-H)]. In the CD spectrum of 6, the CD curve due to 3S-dihydroisocoumarin⁸⁾ was observed. Finally, as described later, treatment of 3R-phyllodulcin 8-O-glucoside $(12)^{10}$ with 50% aqueous methanol under reflux furnished a mixture of 6 and 12. On the basis of this evidence, the structure of 3S-phyllodulcin 8-O-glucoside (6) was determined as shown.

Isomerization Reaction at the 3-Position of Phyllodulcin and Its Glycosides The 3-position of dihydroisocoumarin having the 4'-hydroxyl group was known to show tautomer-like behavior and this type dihydroisocoumarin existed as a racemic mixture [e.g. hydrangenol (7)]. Furthermore, the TLC and HPLC chromatograms of hydrangenol 8-O-glucoside (8) showed two spots or peaks in *ca.* 1 : 1 ratio, but these could not be separated because of the tautomer-like behavior as previously described.^{5,11)} On the other hand, the

We recently found that phyllodulcin from the dried leaves of Hydrangea macrophylla var. thunbergii was an enantiomer mixture of ca. 5:1 ratio at the 3-position, and 3S-phyllodulcin (14) was isolated using chiral HPLC.¹⁾ In order to examine the stability of the 3-position in dihydroisocoumarin having the 4'-methoxyl group, 3R- and 3S-phyllodulcin (11, 14) and their glucosides (6, 12, 13, 15) were treated under extraction conditions of the leaves. After preliminary examination, 3R-phyllodulcin (11) was found to convert 3S-phyllodulcin (14) under reflux for 3 h in the aqueous-methanol solution (1:1) and provided a mixture of **11** and **14** in *ca*. 1:0.6 ratio, while 14 also yielded a mixture of 11 and 14 in ca. 1.3:1 ratio under the same conditions. By the same treatment, 3Rphyllodulcin 8-O-glucoside (12) and the 3'-O-glucoside (13) furnished ca. 0.1:1 mixture of 6 and 12 and ca. 1:0.01 mixture of 13 and 15, whereas 3S-phyllodulcin 8-O-glucoside (6) and the 3'-O-glucoside (15) yielded ca. 1:1.5 mixture of 6 and 12 and ca. 0.01:1 mixture of 13 and 15, respectively. This evidence revealed that the 3-positions of phyllodulcins (11, 14) and their glucosides (6, 12, 13, 15) also had a tautomer-like behavior under the reflux condition of their aqueous-methanol solution.

Experimental

The instruments used to obtain physical data and the experimental conditions for chromatography were the same as described in our previous paper.¹

Isolation of Hydrangenol and Thunberginol I Glycosides (1–5) 3*R*and 3*S*-Hydrangenol 4'-*O*-apiosylglucosides (1, 2), 3*R*- and 3*S*-thunberginol I 4'-*O*-glucosides (3, 4), and thunberginol I 8-*O*-glucoside (5) were isolated as described earlier.¹⁾ 3*R*- and 3*S*-Phyllodulcin 8-*O*-glucoside mixture (38.6 mg)¹⁾ was separated by chiral column HPLC [column: Ceramospher chiral RU-1 ($250 \times 10 \text{ nm}$ i.d., Shiseido, Ltd.), solvent: MeOH, flow rate: 2 ml/min] to give 6 (8.5 mg) and 12 (30 mg).

3*R*-Hydrangenol 4'-*O*-Apiosylglucoside (1): A white powder, $[\alpha]_{\rm D}^{25}$ −23.9° (*c*=0.1, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₂₆H₃₀O₁₃Na (M+Na)⁺: 573.1584. Found: 573.1600. CD [θ]₂₅ (*c*=0.0025, MeOH, nm): −5800 (221), −3000 (226), +2200 (257). UV [$\lambda_{\rm Max}^{\rm MeOH}$ nm (log *c*)]: 245 (3.2), 314 (2.9). IR (KBr, cm⁻¹): 3570, 1670, 1618, 1000. ¹H-NMR (DMSO-*d*₆, 270 MHz) δ: 4.83 (1H, d, *J*=3.0 Hz, 1^{''}-H), 4.85 (1H, d, *J*=7.5 Hz, 1^{''}-H), 5.73 (1H, dd, *J*=3.1, 12.1 Hz, 3-H), 6.87 (1H, d, *J*=6.9 Hz, 5-H), 6.90 (1H, d, *J*=8.1 Hz, 7-H), 7.09 (2H, d, *J*=8.6 Hz, 3', 5'-H), 7.47 (2H, d, *J*=8.6 Hz, 2', 6'-H), 7.53 (1H, dd, *J*=6.9, 8.1 Hz, 6-H), 10.92 (1H, br s, 8-OH). ¹³C-NMR (DMSO-*d*₆, 68 MHz) δc: given in Table 1. Positiveion FAB-MS: *m/z* 573 (M+Na)⁺.

3*S*-Hydrangenol 4'-*O*-Apiosylglucoside (**2**): A white powder, $[\alpha]_{\rm D}^{25}$ -88.6° (*c*=0.1, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₂₆H₃₀O₁₃Na (M+Na)⁺: 573.1584. Found: 573.1596. CD [θ]₂₅ [*c*=0.0025, MeOH, nm]: -1700 (226), +3200 (239), -4800 (258). UV [$\lambda_{\rm meX}^{\rm mox}$ nm (log ε)]: 242 (3.3), 314 (3.0). IR (KBr, cm⁻¹): 3570, 1670, 1617. ¹H-NMR (DMSO-*d*₆, 270 MHz) δ: 4.84 (1H, d, *J*=3.0 Hz, 1‴-H), 4.86 (1H, d, *J*= 7.3 Hz, 1″-H), 5.72 (1H, dd, *J*=3.0, 12.2 Hz, 3-H), 6.88 (1H, d, *J*=7.4 Hz, 5-H), 6.91 (1H, d, *J*=7.9 Hz, 7-H), 7.09 (2H, d, *J*=8.9 Hz, 3', 5'-H), 7.48 (2H, d, *J*=8.9 Hz, 2', 6'-H), 7.53 (1H, dd, *J*=7.4, 7.9 Hz, 6-H), 10.89 (1H, br s, 8-OH). ¹³C-NMR (DMSO-*d*₆, 68 MHz) δc: given in Table 1. Positive-ion FAB-MS: *m/z* 573 (M+Na)⁺.

3*R*-Thunberginol I 4'-O-Glucoside (3): A white powder, $[\alpha]_D^{25} + 15.5^{\circ}$ (*c*=0.1, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₂₂H₂₅O₁₀ (M+H)⁺: 449.1448. Found: 449.1476. IR (KBr, cm⁻¹): 3410. 1665, 1619. CD [θ]₂₅ (*c*=0.0025, MeOH, nm): -5000 (240), +10000 (256). UV [λ ^{Max}_{max} nm (log ε)]: 280 (3.6), 313 (3.7). ¹H-NMR (DMSO-*d*₆, 270 MHz) δ : 3.80 (3H, s, 3'-OCH₃), 4.94 (1H, d, *J*=7.2 Hz, 1″-H), 5.71 (1H, dd, *J*=3.0, 11.9 Hz, 3-H), 6.87 (1H, d, *J*=7.3 Hz, 5-H), 6.90 (1H, d, *J*=8.1 Hz, 7-H), 7.01 (1H, dd, *J*=1.7, 8.5 Hz, 6'-H), 7.12 (1H, d, *J*=8.5 Hz, 5'-H), 7.18 (1H, d, *J*=1.7 Hz, 2'-H), 7.53 (1H, dd, *J*=7.3, 8.1 Hz, 6-H), 10.91 (1H, br s, 8-OH). ¹³C-NMR (DMSO-*d*₆, 68 MHz) δ c: given in Table 1. Positive-ion FAB-MS: m/z 449 (M+H)⁺, 471 (M+Na)⁺.

3*S*-Thunberginol I 4'-*O*-Glucoside (4): A white powder, $[\alpha]_D^{25} - 11.9^{\circ}$ (*c*=0.1, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₂₂H₂₅O₁₀ (M+H)⁺: 449.1448. Found: 449.1458. IR (KBr, cm⁻¹): 3410, 1669, 1618. CD [θ]₂₅ (*c*=0.0025, MeOH, nm): +4800 (240), -8300 (255). UV [λ_{max}^{MeOH} nm (log ε)]: 280 (3.7), 313 (3.8). ¹H-NMR (DMSO-*d*₆, 270 MHz) δ : 3.80 (3H, s, 3'-OCH₃), 4.94 (1H, d, *J*=7.3 Hz, 1″-H), 5.70 (1H, dd, *J*=3.2, 12.1 Hz, 3-H), 6.87 (1H, d, *J*=7.5 Hz, 5-H), 6.90 (1H, d, *J*=8.3 Hz, 7-H), 7.02 (1H, dd, *J*=1.7, 8.6 Hz, 6'-H), 7.12 (1H, d, *J*=8.6 Hz, 5'-H), 7.17 (1H, d, *J*=1.7 Hz, 2'-H), 7.52 (1H, dd, *J*=7.5, 8.3 Hz, 6-H), 10.93 (1H, br s, 8-OH). ¹³C-NMR (DMSO-*d*₆, 68 MHz) δ c: given in Table 1. Positive-ion FAB-MS: *m/z* 449 (M+H)⁺, 471 (M+Na)⁺.

Thunberginol I 8-*O*-Glucoside (**5**): A white powder, $[\alpha]_{2}^{D5} - 67.6^{\circ} (c=0.5, MeOH)$. High-resolution positive-ion FAB-MS: Calcd for $C_{22}H_{24}O_{10}Na$ (M+Na)⁺: 471.1267. Found: 471.1285. IR (KBr, cm⁻¹): 3325, 1713, 1601. CD $[\theta]_{25}$ (c=0.0025, MeOH, nm): +6500 (240), -4400 (262), -5700 (295). UV $[\lambda_{max}^{MeOH}$ nm (log ε)]: 226 (4.1), 287(3.6). ¹H-NMR (DMSO- d_{ϵ} , 270 MHz) δ : 3.77 (3H, s, 3'-OCH₃), 4.67, 4.95 (total 1H, both d, J=7.3 Hz, 1"-H), 5.39, 5.48 (total 1H, both d, J=2.6, 10.6 Hz, 3-H), 6.79, 6.80 (total 1H, both d, J=8.6 Hz, 5'-H), 6.86, 7.33 (total 1H, both d, J=2.0, 8.6 Hz, 6'-H), 6.92, 7.11 (total 1H, both d, J=2.0 Hz, 2'-H), 7.02, 7.11 (total 1H, both d, J=7.6 Hz, 5-H), 7.18, 7.31 (total 1H, both d, J=8.3 Hz, 7-H), 7.53, 7.61 (total 1H, both d, J=7.6, 8.3 Hz, 6-H). ¹³C-NMR (DMSO- d_{ϵ} , 68 MHz) δ : given in Table 1. Positive-ion FAB-MS: m/z 471 (M+Na)⁺.

35-Phyllodulcin 8-*O*-Glucoside (6): A white powder, $[\alpha]_{25}^{25} - 121.3^{\circ}$ (*c*=0.1, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₂₂H₂₅O₁₀ (M+H)⁺: 449.1448. Found: 449.1445. IR (KBr, cm⁻¹): 3422, 1709, 1603. CD $[\theta]_{25}$ (*c*=0.0025, MeOH, nm): +5000 (240), -8900 (258), -8100 (296). ¹H-NMR (DMSO-*d*₆, 270 MHz) δ : 3.76 (3H, s, 4'-OCH₃), 4.94 (1H, d, *J*=7.2 Hz, 1"-H), 5.39 (1H, dd, *J*=3.0, 10.9 Hz, 3-H), 6.85 (1H, dd, *J*= 1.8, 8.4 Hz, 6'-H), 6.91 (1H, d, *J*=1.8 Hz, 2'-H), 6.93 (1H, d, *J*=8.4 Hz, 5'-H), 7.02 (1H, d, *J*=7.4 Hz, 5-H), 7.18 (1H, d, *J*=8.4 Hz, 7-H), 7.52 (1H, dd, *J*=7.4, 8.4 Hz, 6-H). Positive-ion FAB-MS: *m/z* 449 (M+Na)⁺.

Acid Hydrolysis of 3*R*- and 3*S*-Hydrangenol 4'-O-Apiosylglucosides (1, 2), 3*R*- and 3*S*-Thunberginol I 4'-O-Glucosides (3, 4), and Thunberginol I 8-O-Glucoside (5) A solution of 1—5 (2 mg each) in 5% aqueous H_2SO_4 -dioxane (1:1, v/v, 1 ml) was heated under reflux for 2 h. After cooling, the reaction mixture was neutralized with Amberlite IRA-400 (OH⁻ form) and the resin was filtered. After removal of the solvent *in vacuo* from the filtrate, the residue was passed through a Sep-Pak C18 cartridge with H_2O and MeOH. The H_2O eluate was concentrated and the residue was treated with L-cysteine methyl ester hydrochloride (2 mg) in pyridine (0.02 ml) at 60 °C for 1 h. After reaction, the solution was treated with *N*,*O*-bis(trimethylsilyl)trifluoroacetamide (0.01 ml) at 60 °C for 1 h. The supernatant was then subjected to GLC analysis to identify the derivatives (i, ii) of D-glucose (from 1, 2, 3, 4, and 5) and D-apiose (from 1 and 2). GLC conditions: column, Supelco^{TM-1}, 0.25 mm (i.d.)×30 m; column temperature, 230 °C; t_R : i, 24.0 min, ii, 14.2 min.

Partial Methanolysis of 3*R***- and 3***S***-Hydrangenol 4***'-O***-Apiosylglucosides (1, 2)** A solution of **1** or **2** (each 5.0 mg) in 3% HCl-dry MeOH (0.5 ml) was stirred at room temperature for 2 h. The reaction solution was neutralized with Amberlite IRA-400 (OH⁻ form) and the resin was filtered off. After removal of the solvent from the filtrate under reduced pressure the residue was purified by ODS silica gel column chromatography [MeOH– H₂O (1:1)] to give 3*R***- [9** (3.0 mg) from **1**] or 3*S*-hydrangenol 4'-*O*-glucoside [**10** (2.9 mg) from **2**], which was identified with an authentic sample¹) by HPLC [Ceramospher Chiral RU-1 (250×4.6 mm i.d.), MeOH, 2.0 ml/min, $t_{\rm R}$: **9**, 12.4 min; **10**, 27.2 min].

Isomerization Reaction of 3*R*- and 3*S*- Phyllodulcin (11, 14) and its Glucosides (6, 12, 13, 15) i) A solution of 6, 11—15 (each 1.0 mg) in 50% aqueous MeOH (2 ml) was heated under reflux for 3 h. After removal of the solvent under reduced pressure, the residue was subjected to HPLC analysis [Ceramospher Chiral RU-1 ($250 \times 4.6 \text{ mm i.d.}$), MeOH, 2.0 ml/min] to determine the composition of the 3*R*- and 3*S*-isomers. The proportions of the isomers were characterized from comparison of the peak areas in HPLC analysis.

ii) A solution of **12** (35.0 mg) in 50% aqueous MeOH (10 ml) was heated under reflux for 3 h. After removal of the solvent under reduced pressure, the residue was subjected to HPLC [Ceramospher Chiral RU-1 (250×10 mm i.d.), MeOH, 2.0 ml/min, $t_{\rm R}$: **6**, 26.0 min; **12**, 22.8 min] to give **6** (12.4 mg) and **12** (9.3 mg). **6** was identified with an authentic 3*S*-phyllodulcin 8-*O*-glucoside by CD and ¹H-NMR spectra.

References and Notes

- Part 1: Yoshikawa M., Murakami T., Ueda T., Shimoda H., Yamahara J., Matsuda H., *Heterocycles*, **50**, 411–418 (1999).
- a) Yoshikawa M., Shimada H., Nishida N., Li Y., Toguchida I., Yamahara J., Matsuda H., Chem. Pharm. Bull., 46, 113—119 (1998); b) Yoshikawa M., Murakami T., Yashiro K., Yamahara J., Matsuda H., Saijoh R., Tanaka O., *ibid.*, 46, 647—654 (1998); c) Yoshikawa M., Murakami T., Yashiro K., Matsuda H., *ibid.*, 46, 1339—1340 (1998); d) Matsuda H., Li Y., Murakami T., Matsumura N., Yamahara J., Yoshikawa M., *ibid.*, 46, 1399—1403 (1998); e) Yoshikawa M., Murakami T., Yamahara J., Yoshikawa M., *Life Sci.*, 63, PL245—250 (1998).
- a) Yoshikawa M., Murakami T., Komatsu H., Yamahara J., Matsuda H., *Heterocycles*, **47**, 397–405 (1998); b) Yoshizumi S., Murakami T., Kadoya M., Matsuda H., Yamahara J., Yoshikawa M., *Yakugaku Zasshi*, **118**, 188–192 (1998); c) Yoshikawa M., Murakami T., Komatsu H., Matsuda H., *Chem. Pharm. Bull.*, **46**, 812–816 (1998); d) Komatsu H., Murakami T., Matsuda H., Yoshikawa M., *Heterocycles*, **48**, 703–710 (1998); e) Yoshikawa M., Murakami T., Fukada N., Matsuda H., Sashida Y., Yamahara J., *ibid.*, **48**, 869–873 (1998); f) Yoshikawa M., Murakami T., Shimada H., Fukada N., Matsuda H., Sashida Y., Yamahara J., *ibid.*, **48**, 869–873 (1998); f) Yoshikawa M., Murakami T., Shimada H., Yoshikawa M., Yamahara J., Matsuda H., *Chem. Pharm. Bull.*, **46**, 1008–1014 (1998); g) Matsuda H., Murakami T., Li Y., Yamahara J., Yoshikawa M., *Bioorg. Med. Chem.*, **6**, 1019–1023 (1998).
- 4) a) Yoshikawa M., Harada E., Naitoh Y., Inoue K., Matsuda H., Shi-

moda H., Yamahara J., Murakami N., *Chem. Pharm. Bull.*, **42**, 2225–2230 (1994); *b*) Yamahara J., Matsuda H., Shimoda H., Wariishi N., Yagi N., Murakami N., Yoshikawa M., *Nippon Yakurigaku Zasshi*, **105**, 365–379 (1995); *c*) Matsuda H., Shimoda H., Yamahara J., Yoshikawa M., *Bioorg. Med. Chem. Lett.*, **8**, 215–220 (1998); *d*) Shimoda H., Matsuda H., Yamahara J., Yoshikawa M., *Biol. Pharm. Bull.*, **21**, 809–813 (1998).

- Yoshikawa M., Matsuda H., Shimoda H., Shimada H., Harada E., Naitoh Y., Miki A., Yamahara J., Murakami N., *Chem. Pharm. Bull.*, 44, 1440–1447 (1996).
- Yoshikawa M., Shimada H., Yagi N., Murakami N., Shimoda H., Yamahara J., Matsuda H., *Chem. Pharm. Bull.*, 44, 1890–1898 (1996).
- Yoshikawa M., Ueda T., Matsuda H., Yamahara J., Murakami N., *Chem. Pharm. Bull.*, **42**, 1691—1693 (1994).
- Hashimoto T., Tori M., Asakawa Y., *Phytochemistry*, 26, 3323–3330 (1987).
- Hara S., Okabe H., Mihashi K., Chem. Pharm. Bull., 34, 1843–1845 (1986).
- 10) Yagi A., Washida Y., Takata N., Nishioka T., Chem. Pharm. Bull., 20, 1755–1761 (1972).
- a) Yoshikawa M., Chatani N., Harada E., Nishino Y., Yamahara J., Murakami N., *Yakugaku Zasshi*, **114**, 176–181 (1994); b) Yamamoto H., Yamamoto M., Yamamoto K., Chatani N., Yoshikawa M., *Biol. Pharm. Bull.*, **21**, 1003–1004 (1998).
- 12) Arakawa H., Bull. Chem. Soc. Jpn., 33, 200–202 (1960).