Convenient Synthesis of 5-Trifluoroacetylated Imidazoles by Ring Transformation of Mesoionic 1,3-Oxazolium-5-olates

Masami KAWASE* and Setsuo SAITO

Faculty of Pharmaceutical Sciences, Josai University, 1–1 Keyakidai, Sakado, Saitama 350–0295, Japan. Received October 14, 1999; accepted November 15, 1999

Mesoionic 4-trifluoroacetyl-1,3-oxazolium-5-olates (1), obtained from the reaction of *N*-acyl-*N*-alkylglycines (2) with trifluoroacetic anhydride, react with amidines to give 5-trifluoroacetylimidazoles (3) in moderate yield. The novel ring transformations of 1 into 3 occur *via* an initial attack of amidines on the C-2 position of the ring.

Key words: imidazole; 1,3-oxazolium-5-olate; trifluoroacetyl compound; ring transformation; trifluoroacetic anhydride

Trifluoromethyl ketones are interesting compounds in the design of enzyme inhibitors.¹⁾ The concept of mimicking tetrahedral transition states of enzyme-mediated peptide bond hydrolysis previously led to the successful design and synthesis of trifluoroacetyl compounds as a promising class of proteinase inhibitors.¹⁾ Recently, we have reported that heteroaromatic and aromatic trifluoromethyl ketones show interesting biological activities such as bactericidal activity^{2a)} and apoptosis-induced cytotoxic activity.2b) However, there appear to be few practical procedures available for the synthesis of trifluoroacetyl substituted heterocycles, such as imidazoles and pyridines.3) Generally, heterocycles, which are electron deficient, are resistant to electrophilic substitution reactions, such as Friedel-Crafts acylation.4) Hence, an effective method for the synthesis of trifluoroacetylated heteroaromatic compounds is required.

Although the imidazole ring is an important residue and fluorinated systems are much sought after by medicinal and agricultural chemists,⁵⁾ trifluoroacetyl substituted imidazoles remain rare compounds.

In the course of our studies on the reactivities of mesoionic 1,3-oxazolium-5-olates,⁶⁾ we have focused on 4trifluoroacetyl-1,3-oxazolium-5-olates (1) as useful synthons for trifluoromethyl-substituted heterocycles.⁷⁾ Compound 1 could easily be prepared from N-acyl-N-alkylglycines 2 with trifluoroacetic anhydride (TFAA).8) In general, the mesoionic 1,3-oxazolium-5-olates are too unstable to be isolated and are utilized in situ.⁶⁾ However, compound 1 with 4-trifluoroacetyl group can be isolated and stored for several months. It is reported that compound 1 showed high reactivity towards nucleophilic reagents such as H₂O, EtOH, and AcOH, bringing about ring-opening reactions.^{$\tilde{8}$} These reactions occur via an initial attack of a nucleophile on the C-5 position of the ring.^{7d)} We have been interested in the reactions of 1 with Nnucleophiles such as amidines,^{7a)} ammonia,^{7b)} hydrazines,^{7c)} and aminomalonate.^{7e)} In principle, nucleophilic reagents can be expected to be added to one of the three electrophilic centers at C-2, C-5, and COCF₃ in 1. We now present a full account of the reactions of 1 with amidines^{7a)} and the new synthesis of 5-trifluoroacetylimidazoles 3.

Results and Discussion

The 4-trifluoroacetyl-1,3-oxazolium-5-olates (1a-d) required for this study have been prepared by the reaction of *N*-acyl-*N*-alkylglycines (2a-d) with TFAA. The derivatives employed in this study, along with the products (3a-h, 4a-d)

f, 5a-b), are summarized in Chart 1. Table 1 shows the results when 4-trifluoroacetyl-1,3-oxazolium-5-olate (1a) was allowed to react with formamidine under various conditions. The best result was obtained by the reaction of **1a** (1 mmol) with formamidine hydrochloride (1.5 mmol) in N,N-dimethylformamide (DMF) (5 ml) in the presence of potassium carbonate (1.5 mmol) at 70 °C for 2 h: 5-trifluoroacetylimidazole 3a and dihydroimidazole 4a were isolated in 63% and 19% yields, respectively (Table 1, run 5). Various substituted 4-trifluoroacetyl-1,3-oxazolium-5-olates 1a-d were subjected to a reaction under the optimum conditions and the results are listed in Table 2. In all reactions examined, 4,5-dihydroimidazoles 4a-f were isolated as side products, whose mechanism of formation is discussed later. In runs 7 and 8, 5a and 5b were also isolated, possibly formed via hydrolysis of the mesoionic 1,3-oxazolium-5-olates 1.

A one-pot conversion of 2 to 3 also proceeded successfully. Thus, 2a reacted with TFAA in CH₂Cl₂ to give 1a, which was directly subjected to the ring transformation reaction to yield 3a in 68% yield (Table 2, run 2). The one-pot procedure gave slightly higher yield. When acetamidine or benzamidine was used instead of formamidine, 4-methyland 4-phenylimidazole derivatives (3e, 3f) were obtained in good yield, respectively (Table 2, runs 6, 7). Pentafluoropropionic and heptafluorobutyric anhydride also reacted readily with *N*-benzoyl-*N*-methylglycine 2a to yield 5-pentafluoropropionyl- (3g) and 5-heptafluorobutyrylimidazole (3h) by the one-pot procedure in good yield, respectively (Table 2, runs 8, 9, Chart 1).

The structure of **3a**—**f** is supported by spectral and analytical data. The presence of the COCF₃ group in **3a-f** was determined on the basis of long-range ¹³C-¹⁹F coupling. Thus, the carbons of the COCF₃ group appear at around δ 116 ppm (quartet, ${}^{1}J_{C-F}$ =280—290 Hz) and δ 170 ppm (quartet, ${}^{2}J_{C-F}$ = 37-38 Hz). The ultimate proof of the structure of 3a rests upon its conversion into the known⁹⁾ 5-formyl-1-methyl-2phenylimidazole (8), as shown in Chart 2. Thus, treatment of 3a with NaH followed by ethyl iodide afforded an ethyl ester (6).¹⁰⁾ In this reaction, compound 7 of formula $C_{15}H_{14}F_6N_2O$ was also isolated as a side product. The ¹H-NMR spectrum of 7 contained a signal of ethoxy protons, whereas the IR spectrum of 7 showed no carbonyl group. MS and analytical data indicated the existence of two trifluoromethyl groups, while the ¹³C-NMR spectrum indicated only one trifluoromethyl group at δ 122 ppm (quartet, ${}^{1}J_{C-F}$ =293 Hz). The reduction with $LiAlH_4$ of the ester 6, followed by oxidation

© 2000 Pharmaceutical Society of Japan

Chart 1

Table 1. Reactions of **1a** with Formamidine $\cdot X^{a}$

Run	Х	Base $(eq)^{b}$	Solvent	Product (%)		
				3a	4a	5a
1	HCl	None	Dioxane	5	9	74
2	HCl	$Et_{3}N(3)$	Dioxane	43	7	3
3	HCl	Pyridine (3)	Dioxane	9		81
4	HCl	$K_2CO_3(1.5)$	Dioxane	42	10	3
5	HCl	$K_2CO_3(1.5)$	DMF	63	19	
6	HCl	$K_2CO_3(1.5)$	CHCl ₃	31	6	19
7	AcOH	$K_2CO_3(1.5)$	DMF	55	38	_
8	AcOH	None	Dioxane	40	18	_

a) The reactions were carried out on a 1 mmol scale at 70 °C for 2 h. b) Eq refers to molar equivalents with respect to 1a.

Table 2. Reactions of Mesoionic Compounds (1) or N-Acyl-N-alkylglycine (2) with Formamidine \cdot HCl

Run	Starting material	Product (yield, %)
1	1a	3a (63), 4a (19)
2	$2a^{a)}$	3a (68), 4a (15)
3	1b	3b (55), 4b (14)
4	1c	3c (49), 4c (15)
5	1d	3d (54), 4d (11)
6^{b}	1a	3e (46), 4a (16)
7 ^{c)}	1a	3f (55), 4a (25), 5a (4)
8^{d}	$2a^{a)}$	3g (60), 4e (14), 5b (11)
$9^{e)}$	$2a^{a)}$	3h (56), 4f (20)

a) Yields refer to the one-pot procedure using 2a. b) Acetamidine HCl was used instead of formamidine. c) Benzamidine HCl was used instead of formamidine. d) Pentafluoropropionic anhydride was used instead of TFAA in a one-pot conversion procedure. e) Heptafluorobutyric anhydride was used instead of TFAA in a one-pot conversion procedure.

of the resulting alcohol with MnO_2 , leads the known⁹⁾ 5-formyl-1-methyl-2-phenylimidazole **8** in a high overall yield.

The structure of 4a—f was also deduced from spectroscopic data, and dehydration of 4a with POCl₃ and pyridine¹¹⁾ gave the known¹²⁾ 4-trifluoromethyl-1-methyl-2-phenylimidazole (9) in 88% yield (Chart 2).

The IR spectra of **5** did not exhibit an absorption band due to the trifluoroacetyl form (**5A** and **5B**), but a band represented the hydrated form. The ¹³C-NMR spectra of **5a** and **5b** contained hydrated carbon signals appearing at 94.42 (${}^{2}J_{C-F}$ =32 Hz) and 95.50 (${}^{2}J_{C-F}$ =27 Hz), respectively.

Mechanistic Consideration The novel ring transformation of 1 into imidazoles 3 may proceed through an initial attack of amidines on the C-2 position of the ring. This involves direct displacement of the O(1)–C(5) portion by a N–C fragment of the amidines, which corresponds with 1,3-

dipolar cycloaddition of munchnones with nitriles to afford imidazoles.¹³⁾ However, the cycloaddition has limited synthetic applicability, for only electron-deficient nitriles can react as dipolarophiles, and only one case using 2,4diphenyl-1,3-oxazolium-5-olates as a dipole has been recorded.¹³⁾ On the other hand, the analogous reaction of a munchnone with a tosylimine to provide an imidazole has been also reported.¹⁴⁾

As shown in Chart 3, a nucleophilic attack of amidines on the C-2 position of 1 affords an adduct (10) which is converted to 11. The intermediate 11 gives an open-chain intermediate 12, which is then decarboxylated to afford an enolate anion (13). The intermediate 13 can undergo cyclization to give 14, which loses ammonia leading to the imidazoles 3. A similar reactivity of amidines which extrudes ammonia has been postulated in their reactions with benzoins¹⁵ or cyanohydrins¹⁶ to give oxazoles.

A plausible mechanism of the formation of 4 and 5 is suggested in Charts 4 and 5, respectively. Compound 4 is not formed by the reaction of 5 with ammonia, because the reaction of 5a with ammonium acetate did not afford the expected 4a. However, the same reaction of 2a with ammonium acetate gave 4a in a high yield. Thus, a nucleophilic attack of ammonia, which was generated during the reaction, on C-2 of 1 gives rise to the adduct 15. The scission of the O(1)–C(2) bond of 16 gives an open-chain intermediate 17, which extrudes carbon dioxide to provide the ketone 18. Finally, intramolecular cyclization of 18 affords dihydroimidazoles 4. The formation of 5 might be formed through the hydrolysis of the keto form 19, which is probably in equilibium with 1.

In summary, we devised an easy method of accessing 5-trifluoroacetylimidazole derivatives which are otherwise difficult to obtain. The principle advantage of using mesoionic oxazoles 1 is the great variety of substituents available for R^1 and R^2 . This flexibility in the type of substituents in the mesoionic ring will be reflected in the corresponding substitution of the resulting imidazole. The trifluoroacetyl group at the 5-position serves as a handle for further elaborations, therefore making a variety of functionalized imidazoles accessible.

Experimental

General Methods All melting points were determined using a Yanagimoto hot-stage melting point apparatus and are uncorrected. ¹H-NMR spectra were measured on either a JEOL JNM-PMX60SI, JNM-FX270, or JNM-GSX500 spectrometer with tetramethylsilane (Me₄Si) as an internal reference and CDCl₃ as the solvent. ¹³C-NMR spectra were obtained on a JEOL JNM-FX270 or JNM-GSX500 spectrometer (at 68 or 127 MHz). Both ¹Hand ¹³C-NMR spectral data are reported in parts per million (δ) relative to Me₄Si. Infrared (IR) spectra were obtained with a JEOL JMS-DX300 spectrometer with a direct inlet system at 70 eV. Elemental analyses were carried out in the microanalytical laboratory of this university. Standard workup means that the organic layers were finally dried over Na₂SO₄, filtered, and concentrated *in vacuo* below 45 °C using a rotary evaporator.

Materials The following compounds were prepared by reported procedures: *N*-Benzoyl-*N*-methylglycine (**2a**): mp 101—104 °C (mp¹⁷⁾ 102—104 °C). *N*-Acetyl-*N*-phenylglycine (**2b**): mp 196—198 °C (mp¹⁷⁾ 193—195 °C). *N*-Methyl-*N*-pivaloylglycine (**2c**): Yield 91%. mp 75—76 °C (benzene–hexane). ¹H-NMR (60 MHz) δ: 1.30 (9H, s), 3.18 (3H, s), 4.25 (2H, s), 10.13 (1H, br s). IR (Nujol) cm⁻¹: 2500—300, 1680, 1620. MS *m/z*: 173 (M⁺, 3%), 57 (100). High-resolution MS: Calcd for C₈H₁₅NO₃: 173.1053. Found: 173.1045. *N*-Benzoyl-*N*-phenylglycine (**2d**): mp 190—193 °C (mp¹⁷⁾ 193—195 °C).

General Procedure for the Preparation of 4-Trifluoroacetyl-1,3-oxazolium-5-olates (1) TFAA (11 ml, 78 mmol) was added to a stirred solution of *N*-acyl-*N*-alkylglycine (26 mmol) in CH_2Cl_2 (50 ml) at 0 °C for 10 min. The mixture was stirred at 25 °C for 3 h and then extracted with CH_2Cl_2 (80 ml×2). The extract was washed successively with 3% HCl, H₂O, 1% Na₂CO₃, and H₂O. After the standard workup, the residue was recrystallized from CH_2Cl_2 -hexane to give the 4-trifluoroacetyl-1,3-oxazolium-5olates (1). 3-Methyl-2-phenyl-4-trifluoroacetyl-1,3-oxazolium-5-olate (1a): Yield 92%. mp 161—163 °C (mp^{8b)} 162—163 °C). 2-Methyl-3-phenyl-4-trifluoroacetyl-1,3-oxazolium-5-olate (1b): Yield 78%. mp 200—203 °C (mp^{8b)} 211—212 °C). 2-*tert*-Butyl-3-methyl-4-trifluoroacetyl-1,3-oxazolium-5-olate (1c): Yield 94%. mp 120—121 °C (benzene–hexane). IR (Nujol) cm⁻¹: 1800, 1630. ¹H-NMR (270 MHz) &: 1.52 (9H, s), 4.08 (3H, s). ¹³C-NMR (CDCl₃, 68 MHz) &: 27.43 (CH₃), 35.26 (C), 36.26 (C), 36.27 (CH₃), 96.69 (C), 116.84 (CF₃, ¹J_{C-F}=289.0Hz), 157.82 (C), 162.69 (C), 167.15 (C, ²J_{C-F}= 37.4 Hz). MS *m/z*: 251 (M⁺, 22%), 105 (100%). *Anal.* Calcd for C₁₀H₁₂F₃NO₃: C, 47.81; H, 4.81; N, 5.58. Found: C, 47.87; H, 4.76; N, 5.63. 2,3-Diphenyl-4-trifluoroacetyl-1,3-oxazolium-5-olate (1d): Yield 81%. mp 194—196 °C (mp^{8b)} 194—196 °C).

General Procedure for the Reactions of 4-Trifluoroacetyl-1,3-oxazolium-5-olates (1) with Amidines A solution of 1 (1.5 mmol), an amidine (2.2 mmol), and potassium carbonate (207 mg, 2.2 mmol) in dry DMF (5 ml) was stirred at 70 °C for 2 h. The mixture was diluted with AcOEt (40 ml) and H₂O (30 ml). After the standard workup, the residue was purified by column chromatography on silica gel with EtOAc–hexane to give the products (3, 4, and/or 5).

1-Methyl-2-phenyl-5-trifluoroacetylimidazole (3a) and 4-Hydroxy-1methyl-2-phenyl-4-trifluoromethyl-4,5-dihydroimidazole (4a): 3a; 63% yield from the less polar fraction (EtOAc:hexane=1:1), mp 107-108 °C (hexane). IR (Nujol) cm⁻¹: 1680. ¹H-NMR (500 MHz) δ : 4.00 (3H, s), 7.51—7.54 (3H, brs), 7.61—7.66 (2H, brs), 8.15 (1H, s). ¹³C-NMR (127 MHz) δ : 35.23 (CH₃), 116.56 (CF₃, ¹J_{C-F}=291 Hz), 126.34 (C), 128.31 (C), 128.94 (CH), 129.45 (CH), 130.66 (CH), 143.31 (CH, ${}^{3}J_{CF}$ =5.2 Hz), 156.16 (C), 170.79 (C, ${}^{2}J_{C-F}$ =37 Hz). MS *m/z*: 254 (M⁺, 100%). Anal. Calcd for C12H0F3N2O: C, 56.70; H, 3.57; N, 11.02. Found: C, 56.75; H, 3.55; N, 11.11. 4a; 19% yield from the more polar fraction (EtOAc:hexane=1:1), mp 196—198 °C (Et₂O). IR (Nujol) cm⁻¹: 2400—3300 (br). ¹H-NMR (500 MHz) δ: 2.91 (3H, s), 3.56 (1H, d, J=11.7 Hz), 3.70 (1H, d, J=11.7 Hz), 7.41—7.48 (3H, m), 7.53—7.56 (2H, m). ¹³C-NMR (127 MHz) δ: 34.60 (CH₃), 59.73 (CH₂), 94.01 (C, ${}^{2}J_{C-F}$ =31 Hz), 124.24 (CF₃, ${}^{1}J_{C-F}$ =286 Hz), 128.44 (CH), 128.52 (CH), 128.59 (C), 130.81 (CH), 169.71 (C). MS m/z: 244 (M⁺, 10%), 91 (100%). Anal. Calcd for C₁₁H₁₁F₃N₂O: C, 54.10; H, 4.54; N, 11.47. Found: C, 53.98; H, 4.65; N, 11.27.

2-Methyl-1-phenyl-5-trifluoroacetylimidazole (3b) and 4-Hydroxy-2methyl-1-phenyl-4-trifluoromethyl-4,5-dihydroimidazole (4b): 3b; 55% yield from the less polar fraction (EtOAc:hexane=1:1), oil. IR (oil) cm^{-1} : 1700. ¹H-NMR (500 MHz) δ: 2.30 (3H, s), 7.19–7.22 (2H, m), 7.51–7.56 (3H, m), 8.06 (1H, q, J=1.8 Hz). ¹³C-NMR (127 MHz) δ : 13.89 (CH₂), 116.39 (CF₃, ¹J_{C-F}=291 Hz), 126.41 (CH), 126.77 (CH), 129.67 (CH), 129.70 (CH), 136.01 (C), 142.48 (C, ${}^{3}J_{C-F}$ =5.2 Hz), 154.92 (C), 169.11 (C, $^{2}J_{CF}$ =37 Hz). MS *m/z*: 254 (M⁺, 58%), 185 (100%). High-resolution MS: Calcd for C₁₂H₉F₃N₂O: 254.0667. Found: 254.0661. 4b; 14% yield from the more polar fraction (EtOAc:hexane=1:1), mp 201-202 °C (Et₂O). IR (Nujol) cm⁻¹: 2400–3300. ¹H-NMR (500 MHz) δ : 2.05 (3H, s), 3.92 (1H, d, J=11.0 Hz), 4.09 (1H, d, J=11.0 Hz), 7.17 (2H, d, J=8.5 Hz), 7.27 (1H, t, J=7.6 Hz), 7.41 (2H, t, J=7.6 Hz). ¹³C-NMR (127 MHz) δ : 14.69 (CH₃), 59.55 (CH₂), 93.49 (C, ² $_{J_{C,F}}=32$ Hz), 124.37 (CF₃, ¹ $_{J_{C,F}}=285$ Hz), 124.69 (CH), 126.77 (CH), 129.61 (CH), 138.79 (C), 166.03 (C). MS m/z: 244 (M⁺, 17%), 106 (100%). Anal. Calcd for C₁₁H₁₁F₃N₂O: C, 54.10; H, 4.54; N, 11.47. Found: C, 54.20; H, 4.61; N, 11.48.

2-*tert*-Butyl-1-methyl-5-trifluoroacetylimidazole (**3c**) and 2-*tert*-Butyl-4-hydroxy-1-methyl-4-trifluoromethyl-4,5-dihydroimidazole (**4c**): **3c**; 49% yield from the less polar fraction (EtOAc : hexane=1 : 2), mp 38—40 °C (hexane). IR (Nujol) cm⁻¹: 1685. ¹H-NMR (500 MHz) δ: 1.51 (9H, s), 4.07 (3H, s), 7.94 (1H, q, *J*=2.1 Hz). ¹³C-NMR (127 MHz) δ: 28.94 (CH₃×3), 33.97 (C), 35.09 (CH₃), 116.57 (CF₃, ¹*J*_{C-F}=291 Hz), 126.29 (CH), 142.16 (C, ³*J*_{C-F}=5.2 Hz), 163.34 (C), 170.56 (C, ²*J*_{C-F}=37 Hz). MS *m/z*: 234 (M⁺, 20%), 219 (100%). High-resolution MS: Calcd for C₁₀H₁₃F₃N₂O: 234.0980. Found: 234.0964. **4c**; 15% yield from the more polar fraction (EtOAc : hexane=1 : 1), mp 155—157 °C (Et₂O). IR (Nujol) cm⁻¹: 2400—3400. ¹H-NMR (500 MHz) δ: 1.30 (9H, s), 3.07 (3H, s), 3.43 (1H, dq, *J*=1.2, 11.6 Hz). ¹³C-NMR (127 MHz) δ: 28.04 (CH₃×3), 3.69 (C), 34.93 (CH₃), 60.55 (CH₂), 92.75 (C, ²*J*_{C-F}=31 Hz), 124.48 (CF₃, ¹*J*_{C-F}=286 Hz), 175.58 (C). MS *m/z*: 224 (M⁺, 3%), 191 (100%). *Anal.* Calcd for C₉H₁₅F₃N₂O: C, 48.21; H, 6.74; N, 12.49. Found: C, 48.23; H, 6.64; N, 12.52.

1,2-Diphenyl-5-trifluoroacetylimidazole (**3d**) and 1,2-Diphenyl-4-hydroxy-4-trifluoromethyl-4,5-dihydroimidazole (**4d**): **3d**; 54% yield from the less polar fraction (EtOAc:hexane=1:2), mp 134—136 °C (Et₂O). IR (Nujol) cm⁻¹: 1680. ¹H-NMR (500 MHz) δ : 7.24—7.27 (4H, m), 7.33— 7.36 (1H, m), 7.40—7.45 (2H, m), 7.46—7.51 (3H, m), 8.24 (1H, q, *J*=1.8 Hz). ¹³C-NMR (127 MHz) δ: 116.40 (CF₃, ¹J_{C-F}=291 Hz), 127.04 (C), 127.62 (CH), 128.23 (C), 128.44 (CH), 129.29 (CH), 129.51 (CH), 129.69 (CH), 130.26 (CH), 136.48 (C), 143.09 (C, ³J_{C-F}=4.1 Hz), 154.77 (C), 169.41 (C, ²J_{C-F}=37 Hz). MS *m/z*: 316 (M⁺, 100%). *Anal.* Calcd for C₁₇H₁₁F₃N₂O: C, 64.56; H, 3.51; N, 8.86. Found: C, 64.65; H, 3.57; N, 8.88. **4d**; 11% yield from the more polar fraction (EtOAc : hexane=1 : 1), mp 174—175 °C (Et₂O). IR (Nujol) cm⁻¹: 2500—3300. ¹H-NMR (500 MHz) δ: 4.09 (1H, d, *J*=11.6 Hz), 4.13 (1H, d, *J*=11.6 Hz), 6.85 (2H, d, *J*=7.9 Hz), 7.10 (1H, t, *J*=7.6 Hz), 7.20 (2H, t, *J*=7.6 Hz), 7.30 (2H, t, *J*=7.6 Hz), 7.40 (1H, t, *J*=7.6 Hz), 7.49 (2H, d, *J*=7.6 Hz), 8.08 (1H, br s). ¹³C-NMR (127 MHz) δ: 60.68 (CH₂), 93.98 (C, ²J_{C-F}=31 Hz), 124.04 (CF₃, ¹J_{C-F}=285 Hz), 124.39 (CH), 125.71 (CH), 128.28 (CH), 128.82 (C), 129.14 (CH), 129.17 (CH), 131.05 (CH), 140.66 (C), 166.49 (C). MS *m/z*: 306 (M⁺, 15%), 106 (100%). *Anal.* Calcd for C₁₆H₁₃F₃N₂O: C, 62.74; H, 4.28; N, 9.15. Found: C, 62.88; H, 4.40; N 9.08.

1,4-Dimethyl-2-phenyl-5-trifluoroacetylimidazole (**3e**) and **4a**: **3e**; 55% yield from the less polar fraction (EtOAc:hexane=1:2), mp 88—89 °C (hexane). IR (Nujol) cm⁻¹: 1660. ¹H-NMR (500 MHz) δ : 2.61 (3H, q, J=1.8 Hz), 3.89 (s, 3H), 7.51—7.54 (m, 3H), 7.62—7.64 (m, 2H). ¹³C-NMR (127 MHz) δ : 16.39 (C, ³ $J_{C,F}$ =5.1 Hz), 36.14 (CH₃), 116.40 (CF₃, ¹ $J_{C,F}$ =289 Hz), 124.45 (C), 128.52 (C), 128.87 (CH), 129.48 (CH), 130.48 (CH), 151.93 (C), 154.59 (C), 171.12 (C, ² $J_{C,F}$ =37 Hz). MS *m*/*z*: 268 (M⁺, 79%), 199 (100%). *Anal.* Calcd for C₁₃H₁₁F₃N₂O: C, 58.21; H, 4.13; N, 10.44. Found: C, 57.95; H, 4.28; N, 10.56. **4a**; 16% yield from the more polar fraction (EtOAc:hexane=1:1).

2,4-Diphenyl-1-methyl-5-trifluoroacetylimidazole (3f), 4a and N-Methyl-N-[1-(3,3,3-trifluoro-2,2-dihydroxy)propyl]benzamide (5a): 3f; 55% yield from the less polar fraction (EtOAc:hexane=1:1), oil. IR (Nujol) cm^{-1} : 1670. ¹H-NMR (500 MHz) δ: 3.91 (3H, s), 7.41–7.44 (3H, m), 7.51–7.53 (5H, m), 7.68—7.72 (2H, m). ¹³C-NMR (127 MHz) δ: 35.55 (CH₃), 115.75 (CF₃, ¹J_{C-F}=290 Hz), 124.17 (C), 128.00 (CH), 128.56 (C), 128.84 (CH), 129.13 (CH), 129.48 (CH), 129.66 (CH), 130.48 (CH), 133.95 (C), 153.70 (C), 154.21 (C), 174.35 (C, ${}^{2}J_{C-F}$ =38 Hz). MS *m/z*: 330 (M⁺, 78%), 261 (100%). High-resolution MS: Calcd for $C_{18}H_{13}F_3N_2O$: 330.0980. Found: 330.0982. **5a**; 4% yield from the more polar fraction (EtOAc:hexane=1:1), mp 90-92 °C (Et₂O-hexane). IR (Nujol) cm⁻¹: 3280, 1600. ¹H-NMR (500 MHz) δ: 3.18 (3H, s), 3.88 (2H, s), 5.96 (2H, brs), 7.42-7.46 (2H, m), 7.4-7.51 (3H, m). ¹³C-NMR (127 MHz) δ: 41.26 (CH₂), 52.92 (CH₃), 94.42 (C, ${}^{2}J_{C-F}$ =32 Hz), 122.87 (CF₃, ${}^{1}J_{C-F}$ =288 Hz), 127.46 (CH), 128.53 (CH), 130.80 (CH), 133.86 (C), 175.72 (C). CI-MS m/z: 246 (M⁺-H₂O+1, 100%). Anal. Calcd for C₁₁H₁₂F₃NO₃: C, 50.20; H, 4.60; N, 5.32. Found: C, 50.40; H, 4.66; N, 5.37. 4a; 25% yield from the most polar fraction (EtOAc : hexane=1:1).

One-Pot Procedure for the Conversion of *N***-Acyl-***N***-alkylglycine (2) to Imidazoles (3)** TFAA (0.64 ml, 4.5 mmol) was added to a stirred solution of *N***-acyl-***N***-alkylglycine (1.5 mmol) in dry** CH₂Cl₂ (4 ml) at 0 °C. The mixture was stirred at 25 °C for 3 h and the solvents were evaporated to dryness. The residue was dissolved in dry DMF (6 ml), and K₂CO₃ (304 mg, 2.2 mmol) and formamidine ·HCl (182 mg, 2.2 mmol) were added to the DMF solution at 0 °C. The mixture was stirred at 70 °C for 2 h. After the standard workup, the residue was purified by column chromatography on silica gel with EtOAc–hexane to give the products (3, 4 and/or 5).

1-Methyl-5-pentafluoropropionyl-2-phenylimidazole (3g), 4-Hydroxy-1methyl-4-pentafluoroethyl-2-phenyl-4,5-dihydroimidazole (4e), and N-Methyl-*N*-[1-(2,2-dihydroxy-3,3,4,4,4-pentafluoro)butyl]benzamide (5b): 3g; 60% yield from the less polar fraction (EtOAc:hexane=1:2), mp 95-96 °C (Et₂O-hexane). IR (Nujol) cm⁻¹: 1670. ¹H-NMR (500 MHz) δ: 4.00 (3H, s), 7.53-7.55 (3H, m), 7.65-7.67 (2H, m), 8.19 (1H, t, J=2.6 Hz). ¹³C-NMR (127 MHz) δ: 35.46 (CH₃), 108–120 (CF₂CF₃), 127.39 (CH), 128.25 (CH), 128.96 (CH), 129.51 (CH), 130.73 (C), 143.66 (C, ³J_{C-F}=8.3 Hz), 156.18 (C), 172.96 (C, ${}^{2}J_{C-F}$ =27 Hz). MS *m/z*: 304 (M⁺, 71%), 185 (100%). Anal. Calcd for C₁₃H₉F₅N₂O: C, 51.33; H, 2.98; N, 9.21. Found: C, 51.33; H, 3.04; N, 9.34. 4e; 14% yield from the more polar fraction (EtOAc : hexane=1:1), mp 183-186 °C (Et₂O). IR (Nujol) cm⁻¹: 2400-3200. ¹H-NMR (500 MHz) δ : 2.93 (3H, s), 3.64 (1H, d, J=11.9 Hz), 3.69 (1H, d, J=11.9 Hz), 7.44 (2H, t, J=7.3 Hz), 7.49 (1H, t, J=7.3 Hz), 7.55 (2H, d, J=7.3 Hz). ¹³C-NMR (127 MHz) δ : 34.56 (CH₃), 60.19 (CH₂), 94.00 (C, ²J_{C-F}=27 Hz), 105—115 (CF₂CF₃), 128.50 (CH), 128.58 (CH), 129.00 (C), 130.96 (CH), 169.57 (C). MS m/z: 294 (M⁺, 0.4%), 276 (100%). Anal. Calcd for C₁₂H₁₁F₅N₂O: C, 48.99; H, 3.77; N, 9.52. Found: C, 48.81; H, 3.86; N, 9.66. 5b; 11% yield from the most polar fraction (EtOAc: hexane=1:1), oil. IR (oil) cm⁻¹: 3360, 1600. ¹H-NMR (500 MHz) δ : 3.05 (3H, s), 3.19+3.90 (1H, s), 4.69 (2H, s), 7.26-7.50 (3H, m), 8.08-8.10 (2H, m). ¹³C-NMR (127 MHz) δ : 38.65 (CH₃), 53.28 (CH₂), 95.50 (C, ²J_{C-F}=

27 Hz), 110—120 (CF₂CF₃), 127.25 (CH), 128.39 (CH), 130.06 (CH), 133.49 (C), 171.08 (C). MS *m*/*z*: 276 (M⁺-H₂O-F, 100%).

5-Heptafluorobutyryl-1-methyl-2-phenylimidazole (3h) and 4-Heptafluoropropyl-4-hydroxy-1-methyl-2-phenyl-4,5-dihydroimidazole (4f): 3h; 56% yield from the less polar fraction (EtOAc:hexane=1:2), mp 72-73 °C (hexane). IR (Nujol) cm⁻¹: 1660. ¹H-NMR (500 MHz) δ : 4.00 (3H, s), 7.52-7.55 (3H, m), 7.65-7.68 (2H, m), 8.16 (1H, brs). ¹³C-NMR (127 MHz) δ: 35.53 (CH₃), 105–120 (CF₂CF₂CF₃), 128.17 (CH), 128.24 (CH), 128.96 (CH), 129.53 (CH), 130.75 (C), 143.85 (C, ${}^{3}J_{C-F}$ =8.3 Hz), 156.20 (C), 172.66 (C, ${}^{2}J_{C-F}=27$ Hz). MS *m/z*: 354 (M⁺, 61%), 185 (100%). Anal. Calcd for C₁₄H₉F₇N₂O: C, 47.47; H, 2.56; N, 7.91. Found: C, 47.20; H, 2.67; N, 8.15. 4f; 20% yield from the more polar fraction (EtOAc:hexane=1:1), mp 188—189 °C (Et₂O). IR (Nujol) cm⁻¹: 2450—3100. ¹H-NMR (500 MHz) δ : 2.91 (3H, s), 3.60—3.66 (2H, m), 7.43 (2H, t, J=7.3 Hz), 7.48 (1H, t, J=7.3 Hz), 7.53 (2H, d, J=7.0 Hz). ¹³C-NMR (127 MHz) δ : 34.54 (CH₃), 60.26 (CH₂), 95.10 (C, ${}^{2}J_{CF}$ =28 Hz), 110—120 (CF₂CF₂CF₃), 128.46 (CH), 128.56 (CH), 128.71 (C), 130.85 (CH), 169.65 (C). CI-MS m/z: 345 (M⁺+1, 20%), 327 (100%). Anal. Calcd for C₁₃H₁₁F₇N₂O: C, 45.36; H, 3.22; N, 8.14. Found: C, 45.16; H, 3.31; N, 8.30.

Ethyl 1-Methyl-2-phenyl-1H-imidazole-5-carboxylate (6) and 5-[2'-(2-Ethoxy-1,1,1,3,3,3-heptafluoropropyl)]-1-methyl-2-phenylimidazole (7) A solution of 3a (196 mg, 0.77 mmol) in DMF (1 ml) was added to a stirred mixture of NaH (60%) (124 mg, 3.1 mmol) in DMF (2 ml) at 0 °C, and the mixture was stirred at 60 °C for 0.5 h. After the reaction, a solution of EtI (0.25 ml, 3.1 mmol) in DMF (2 ml) was added to the reaction mixture and the mixture was stirred at 80 °C for 0.5 h. After the standard workup, the residue was purified by column chromatography on silica gel with EtOAchexane (1:2) to give 6 (110 mg, 62%) and 7 (11 mg, 4%). 6: The less polar fraction, mp 83—84 °C (Et₂O–hexane). IR (Nujol) cm⁻¹: 1705. ¹H-NMR (500 MHz) δ: 1.39 (3H, t, J=7.2 Hz), 3.95 (3H, s), 4.35 (2H, q, J=7.2 Hz), 7.46-7.50 (3H, m), 7.60-7.63 (2H, m), 7.84 (1H, s). ¹³C-NMR (127 MHz) δ: 14.39 (CH₃), 34.19 (CH₃), 60.41 (CH₂), 124.22 (C), 128.65 (CH), 129.31 (CH), 129.59 (CH), 129.74 (C), 137.18 (CH), 152.63 (C), 160.76 (C). MS m/z: 230 (M⁺, 100%). Anal. Calcd for C₁₃H₁₄N₂O₂: C, 67.81; H, 6.13; N, 12.17. Found: C, 67.72; H, 6.32; N, 12.06. 7: The more polar fraction, mp 79-80 °C (hexane). IR (Nujol) cm⁻¹: 1660. ¹H-NMR (500 MHz) δ: 1.35 (3H, dt, J=1.8, 7.0 Hz), 3.74 (2H, q, J=6.7 Hz), 3.79 (3H, s), 7.39 (1H, s), 7.46—7.49 (3H, m), 7.61—7.62 (2H, m). ¹³C-NMR (127 MHz) δ : 15.04 (CH₃), 34.14 (CH₃), 62.98 (CH₂), 80.63 (C), 119.05 (CH), 122.20 (CF₃, ¹J_{C-F}=293 Hz), 128.64 (CH), 129.44 (CH), 129.51 (CH), 130.01 (C), 133.58 (C), 152.13 (C). MS m/z: 352 (M⁺, 57%), 255 (100%). Anal. Calcd for C₁₅H₁₄F₆N₂O: C, 51.14; H, 4.01; N, 7.95. Found: C, 51.13; H, 4.08; N, 8.05.

1-Methyl-2-phenyl-1H-imidazole-5-carboxaldehyde (8) A solution of ethyl ester (6) (196 mg, 0.85 mmol) in dry tetrahydrofuran (THF) (5 ml) was added to a suspension of lithium aluminum hydride (LAH) (65 mg, 1.7 mmol) in dry THF (3 ml) at 0 °C and the mixture was stirred at 25 °C for 3 h. The reaction was quenched with Na₂SO₄·10H₂O (5 g) and filtrated through a Celite pad and washed with AcOEt (30 ml). The filtrate was evaporated to dryness and the residue was dissolved in dry CH2Cl2 (6 ml). MnO2 (739 mg, 8.5 mmol) was added to the solution and the mixture was stirred at 25 °C for 3 h. The mixture was filtered through a Celite pad and the filtrate was evaporated in vacuo. The residue was purified by column chromatography on silica gel with EtOAc-hexane (1:1) to give 8 (140 mg, 88%). 8: mp 92-94 °C (Et₂O-hexane) (mp⁹⁾ 94—95 °C). IR (Nujol) cm⁻¹: 1665. ¹H-NMR (500 MHz) δ: 4.01 (3H, s), 7.50-7.53 (3H, m), 7.65-7.68 (2H, m), 7.88 (1H, s), 9.78 (1H, s). ¹³C-NMR (127 MHz) δ: 34.46 (CH₃), 128.74 (C), 128.80 (CH), 129.27 (CH), 130.16 (CH), 132.79 (C), 143.63 (CH), 154.39 (C), 179.36 (C). MS m/z: 186 (M⁺, 100%).

1-Methyl-2-phenyl-4-trifluoromethylimidazole (9) POCl₃ (0.23 ml,

2.5 mmol) was added to a stirred solution of **4a** (251 mg, 1.0 mmol) in pyridine (0.73 ml, 9.0 mmol) at 0 °C and the mixture was heated at 90 °C for 2 h. The solvent was evaporated to dryness and the residue was extracted with AcOEt (40 ml×2). After the standard workup, the residue was purified by column chromatography on silica gel with EtOAc–hexane (1 : 5) to give **9** (198 mg, 88%). **9**: mp 59—60 °C (hexane) (mp¹²) 61.5—62.5 °C). IR (Nujol) cm⁻¹: 1585. ¹H-NMR (500 MHz) δ : 3.76 (3H, s), 7.31 (1H, s), 7.45—7.48 (3H, m), 7.61—7.63 (2H, m). ¹³C-NMR (127 MHz) δ : 3.4.82 (CH₃), 121.74 (CH, ${}^{3}J_{C+F}$ =4.1 Hz), 121.77 (CF₃, ${}^{1}J_{C+F}$ =267 Hz), 128.69 (CH), 128.95 (CH), 129.27 (C), 129.54 (CH), 131.56 (C, ${}^{2}J_{C+F}$ =39 Hz), 149.06 (s). MS *m/z*: 226 (M⁺, 100%).

References and Notes

- 1) Begue J. P., Bonnet-Delpon D., Tetrahedron, 47, 3207-3258 (1991).
- a) Kawase M., Harada H., Saito S., Cui J., Tani S., *Bioorg. Med. Chem. Lett.*, 9, 193–194 (1999); b) Kawase M., Sakagami H., Kusama K., Motohashi N., Saito S., *ibid.*, 9, 3113–3118 (1999).
- Kawase M., Koyanagi J., Saito S., Chem. Pharm. Bull., 47, 718–719 (1999).
- Comins D. L., O'Connor S., "Advances in Heterocyclic Chemistry," Vol. 44, ed. by Katritzky A. R., Academic Press, New York, 1988, pp. 199—267; Reiter L. A., *J. Org. Chem.*, **52**, 2714—2726 (1987); Chatani N., Fukuyama T., Kakiuchi F., Murai S., *J. Am. Chem. Soc.*, **118**, 493—494 (1996).
- 5) Grimmett M. R., "Advances in Heterocyclic Chemistry," Vol. 27, ed. by Katritzky A. R., Academic Press, New York, 1970, pp. 241—326; *idem.*, "Comprehensive Heterocyclic Chemistry," Vol. 5, ed. by Potts K. T., Pergamon, Oxford, 1984, pp. 345—498; Elguero J., Fruchier A., Jagerovic N., Werner A., Org. Prep. Proced. Int., 27, 33—74 (1995).
- Kawase M., Miyamae H., Kurihara T., *Chem. Pharm. Bull.*, 46, 749– 756 (1998); Kawase M., Hirabayashi M., Kumakura H., Saito S., Yamamoto K., *ibid.*, 48, 114–119 (2000).
- a) Kawase M., J. Chem. Soc., Chem. Commun., 1994, 2101–2102; b) Kawase M., Saito S., Kurihara T., Heterocycles, 41, 1617–1620 (1995); c) Kawase M., Koiwai H., Yamano A., Miyamae H., Tetrahedron Lett., 39, 663–666 (1998); d) Kawase M., Koiwai H., Saito S., Kurihara T., *ibid.*, 39, 6189–6190 (1998); e) Kawase M., Miyamae H., Saito S., Heterocycles, 50, 71–74 (1999).
- a) Singh G., Singh S., *Tetrahedron Lett.*, **1964**, 3789–3792; b) Greco
 C. V., Gray R. P., Grosso V. G., *J. Org. Chem.*, **32**, 4101–4103 (1967).
- Sircar I., Bobowski G., Bristol J. A., Weishaar R. E., Evans D. B., J. Med. Chem., 29, 261–267 (1986).
- 10) Delgado A., Clardy J., Tetrahedron Lett., 33, 2789-2790 (1992).
- Kamitori Y., Hojo M., Masuda R., Wada M., Takahashi T., *Heterocy*cles, **37**, 153—156 (1994).
- Baldwin J. J., Novello F. C., U.S. Pat., 4125530 [Chem. Abst., 90, P121593n (1979)].
- 13) Brunn E., Funke E., Gotthardt H., Huisgen R., *Chem. Ber.*, **104**, 1562–1572 (1971).
- 14) Consonni R., Croca P. D., Ferraccioli R., La Rosa C., J. Chem. Res., Synop., 1991, 188–189; Bilodeau M. T., Cunningham A. M., J. Org. Chem., 63, 2800–2801 (1998).
- Bredereck H., Gompper R., Schuh H. G., Theiling G., Angew. Chem., 71, 753—774 (1959).
- 16) Haruki H., Imanaka H., Imoto E., Bull. Chem. Soc. Jpn., 41, 1368– 1371 (1968).
- 17) Deruiter J., Swearingen B. E., Wandreker V., Mayfield C. A., J. Med. Chem., 34, 2120—2126 (1991).