440

A Novel Cytotoxic C-Methylated Biflavone from the Stem of Cephalotaxus wilsoniana

Yao-Haur Kuo,^{*,*a,b*} Chin-Hou Lin,^{*a,b*} Shy-Yuan Hwang,^{*c*} Ya-Ching Shen,^{*d*} Yi-Ling Lee,^{*a,b*} and Shyh-Yuan Li^{*,*a,b*}

National Research Institute of Chinese Medicine,^a Shih-Pai, Taipei, 112, Taiwan, R.O.C., Department of Applied Chemistry, Chinese Culture University,^b Taipei, 113, Taiwan, R.O.C., Department of Agriculture and Forestry, Taiwan Endemic Species Research Institute,^c Nantou County, 552, Taiwan, R.O.C., and Institute of Marine Resources, National Sun Yat-Sen University,^d Kaohsiung, 804, Taiwan, R.O.C. Received October 12, 1999; accepted November 12, 1999

Bioassay-directed fractionation of an ethanolic extract of *Cephalotaxus wilsoniana* has resulted in the isolation of a novel *C*-methylated biflavone, taiwanhomoflavone-A (1). Its structure was elucidated on the basis of spectroscopic analysis. Taiwanhomoflavone-A is cytotoxic with ED_{50} values of 3.4, 1.0, 2.0 and 2.5 μ g/ml, respectively, against KB epidermoid carcinoma of nasopharynx, COLO-205 colon carcinoma, Hepa-3B hepatoma, and Hela cervix tumor cells.

Key words Cephalotaxus wilsoniana; cytotoxicity; taiwanhomoflavone-A; 6-C-methyl-7, 4'-O-dimethylamentoflavone

Several antitumor alkaloids¹⁻⁶⁾ have been reported from *Cephalotaxus* spp. *Cephalotaxus wilsoniana* HAYATA (Cephalotaxaceae) is an evergreen tree distributed over the middle mountain of Taiwan. During a search for antitumor agents from the terrestrial plants of Taiwan,⁸⁻¹¹⁾ we found a crude extract from *C. wilsoniana* which possesses inhibitory effect against KB, Hepa-3B, and Hela cancer cell lines. Bioassay-guided fractionation of an EtOH extract led to the isolation of a novel *C*-methylated biflavone (1) in addition to the known compounds, harringtonolide (=hainanolide), *epi*-wilsonine, sugiol, isopimaric acid and kayaflavone. In this paper we describe the structural elucidation of 1 using H–H correlation spectroscope (COSY), ¹³C–¹H heteronuclear multiple quantum coherence (HMBC) experiments.

The molecular formula of taiwanhomoflavone (1) $(C_{33}H_{24}O_{10})$ was indicated by a molecular ion $(m/z 579 [M-H]^+)$ in the FAB-MS spectra. The IR spectrum suggested that 1 contained hydroxyl, conjugated carbonyl and aromatic functions.

Observing the ¹H-NMR spectrum of **1**, an AMX coupling system with signals at δ 8.49 (H-2'), 8.08 (H-6'), and 7.29 (H-5') revealed a 1,3, 4-trisubstituted benzene ring. The signals at $\delta_{\rm H}$ 7.76 (H-2", 6", d, J=8.5 Hz) and $\delta_{\rm H}$ 7.15 (H-3", 5", d, J=8.5 Hz), together with the signals of $\delta_{\rm C}$ 128.56 (C-2", 6"), and 116.81 (3", 5"') in the ¹³C-NMR spectrum indicated another aromatic moiety in an A₂B₂ coupling system. In addition, four aromatic protons in each singlet, two aromatic methoxyls in singlet, and a unique methyl group in sin-

1

glet were observed in the ¹H-NMR spectrum. This evidence revealed that **1** has a biflavone skeleton with a *C*-methyl group and excluded the possibility of linkage between the two flavone moieties at C-2^{'''}, -6^{'''}, -3^{'''} and -5^{'''} in the B-ring.

In the HMBC spectrum, the correlations between C-8" and H-6" and H-2' revealed the connective positions to be at C-3'

Table 1. ¹H- and ¹³C-NMR Data^a (Pyridine-d₅) for Compound 1

Carbon	¹³ C (ppm)	¹ H (ppm)	¹³ C– ¹ H connectivities ^{b)}
2	164.14 s	_	H-3
3	104.76 d	7.12 (s)	_
4	182.73 s	_	H-3
4a	105.54 s	_	H-3
5	158.83 s	_	6-Me
6	108.67 s	_	H-8, 6-Me
7	163.64 s	_	H-8, OMe
8	90.31 d	6.71 (s)	_
8a	156.31 s	_ `	H-8
1'	123.25 s	_	H-5′
2'	131.87 d	8.49 (d, 2.0)	H-6'
3'	104.93 s	_ `	H-5′
4'	161.44 s	_	H-2', 6', OMe
5'	111.82 d	7.29 (d, 8.5)	
6'	128.40 d	8.08 (dd, 2.0,8.5)	H-2'
2″	164.36 s	_	H-3″
3″	103.44 d	6.95 (s)	
4″	183.02 s	_ `	H-3″
4″a	104.85 s	_	H-3", 6"
5″	162.40 s	_	H-3", 6"
6″	99.31 d	6.93 (s)	
7″	163.64 s	_	_
8″	104.76 s	_	H-2', 6"
8″a	155.53 s	_	_ ´
1‴	122.18 s	_	H-3‴, 5‴
2‴	128.56 d	7.76 (d, 8.5)	H-6‴
3‴	116.81 d	7.15 (d, 8.5)	H-5‴
4‴	162.67 s	_ `	H-3", 5", 2", 6"
5‴	116.81 d	7.15 (d, 8.5)	H-3‴
6‴	128.56 d	7.76 (d, 8.5)	H-2‴
6-Me	7.60 g	2.22 (s)	c)
7- <i>O</i> -Me	56.02 g	3.74 (s)	c)
4'-0-Me	55.98 q	3.77 (s)	c)

a) All assignments (¹³C;75.5 MHz, multiplicity; ¹H; 300 MHz) are based on one dimensional (1D) and two dimensional (2D) NMR experiments, including COSY 90, HETCOR, and HMBC spectra. *b*) HMBC corresponded to two or three bonds connectivities. *c*) These assignments were explained in the text.

and C-8" between the flavones. Generally, the carbonyl carbon signal (C-4 or -4") observed near $\delta_{\rm C}$ 183 for biflavones such as ginkgetin¹² would permit the assignment of a peri-OH at C-5 or -5". The signal for C-8 at $\delta_{\rm C}$ 90.3 in **1** was consistent with the carbon bearing a methoxyl group at the C-7 position; otherwise, a chemical shift for C-8 would appear around $\delta_{\rm C}$ 94.0 suggesting a hydroxyl group at C-7.¹² After detailed examination of the HMBC spectrum of 1, a methyl group was assigned at C-6 due to the correlation between the methyl group and C-5 and C-6, respectively. Together with the above evidence, the structure of 1 was deduced to be an analogue of 6-C-methyl-7-O-methylamentoflavone $(2)^{13}$ except for a methoxyl group in 1 and a hydroxyl group in 2. The remaining methoxyl group in 1 was assigned at C-4' due to the HMBC spectrum. Then, the structure of 1 was confirmed unambiguously, and was tentatively named taiwanhomoflavone-A.

Furthermore, bioassays showed that taiwanhomoflavone-A (1) exhibited cytotoxic effects against four cancer cell lines: KB, COLO-205, Hepa-3B and Hela with ED_{50} of 3.45, 1.06, 2.03 and 2.53 µg/ml, respectively. To our knowledge, this is the first report that 6-*C*-methyl biflavone as compound 1 has cytotoxic activity.

Experimental

General Experimental Procedures ¹H- and ¹³C-NMR spectra were recorded at 300.13 and 75.46 MHz, respectively, on a Bruker 300 AC spectrometer. The spectra of heteronuclear correlation, HMBC was established by the coupling of 8 Hz. Electron impact (EI)-MS and FAB-MS were performed on a JEOL SX-102A instrument. Si gel (Merck 70—230 mesh) was used for column chromatograph, and precoated Si gel (Merck 60F-254) plates were used for TLC. HPLC was accomplished on an SPD-6AV liquid chromatography using a preparative C₁₈ column. Melting points were determined on a Fisher-Johns apparatus and are uncorrected.

Plant Material The stems of *Cephalotaxus wilsoniana* were collected in Septemper 1995 on Taipei, Taiwan. A voucher specimen is deposited at the National Research Institute of Chinese Medicine, Shih-Pai, Taipei, Taiwan, R.O.C.

Extraction and Isolation The dried stems of *C. wilsoniana* (6.3 kg) were extracted exhaustively with ethanol . An EtOH extract (200 g) of dried

stems of *Cephalotaxus wilsoniana* was extracted successively with *n*-hexane and CHCl₃. The CHCl₃ extract was chromatographed by column chromatography over Si gel and eluted with *n*-hexane–EtOAc and EtOAc to give 8 fractions. The bioactive fr. 5 (*n*-hexane : EtOAc=2:1) was further separated by HPLC ($5C_{18}$, 250×10 mm) with MeOH–H₂O (9:1) to furnish taiwanhomoflavone-A (1) (11 mg).

Taiwanhomoflavone-A (1): Pale yellow crystal, mp 245—248 °C; IR v_{max} (KBr) 3400 (OH), 1660 (conjugated CO), 1620 (aromatic rings) cm⁻¹; ¹H- and ¹³C-NMR, see Table 1; FAB-MS *m/z* 579 [M–H]⁺; HR-EI-MS *m/z* 580.1379 [M]⁺ (Calcd for C₃₃H₂₄O₁₀, 580.1369).

Cytotoxicity Assay An *in vitro* cytotoxicity assay was performed as previously described.¹¹

Acknowledgments The authors thank the National Science Council, R.O.C. (NSC 88-2314-B-077-007) for financial support to Y. H. Kuo. We also thank Mr. Shih-Jen Wang, NSC Regional Instrument Center of HSIN-CHU, for measuring the FABMS data.

References

- Powell R. G., Weisleder D., Smith C. R., Jr., Wolff I. A., *Tetradron Lett.*, **1969**, 4081–4084.
- Powell R. G., Weisleder D., Smith C. R., Jr., Rohwedder W. K., *Tetradron Lett.*, **1970**, 815–818.
- Khan N. U., Ilyas M., Rahman W., Okigawa M., Kawano N., *Phyto-chemistry*, **10**, 2541–2545 (1971).
- Powell R. G., Mikolajczak K. L., Weisleder D., Smith C. R., Jr., Phytochemistry, 11, 3317–3320 (1972).
- Sun N., Xue Z., Liang S., Huang L., Acta Pharmaceut. Sinica, 1, 39– 43 (1979).
- 6) Qiu M., Lu B. M. X., Nie R., Acta Botanica Yunnanica, 1, 97–99 (1997).
- Furukawa H., Itoigawa M., Haruna M., Jinno Y., Ito K., Lu S. T., Yakugaku Zasshi, 96, 1373–1377 (1976).
- Kuo Y. H., Kuo Yang L. M., Chen C. F., J. Org. Chem., 62, 3242– 3245 (1997).
- 9) Kuo Y. H., Chang Chi. I., Li S. Y., Chou C. J., Chen C. F., Kuo Y. H., Lee K. H., *Planta Med.*, 63, 363–365 (1997).
- 10) Kuo Y. H., Kuo Yang L. M., *Phytochemistry*, **44**, 1275—1281 (1997).
- Kuo Y. H., Huang H. C., Kuo Yang L. M., Chen C. F., J. Org. Chem., 64, 7023-7027 (1999).
- Markham K. R., Sheppard C., Geiger H., *Phytochemistry*, 26, 3335– 3337 (1987).
- 13) Aqil M., Rahman W., Hasaka N., Okigawa M., Kawano N., J. Chem. Soc., Perkin Trans. 1, 1981, 1389–1392.