Pyrinodemins B—D, Potent Cytotoxic bis-Pyridine Alkaloids from Marine Sponge *Amphimedon* sp.

Keiko Hirano,† Takaaki Kubota,† Masashi Tsuda,‡ Yuzuru Mikami,§ and Jun’ichi Kobayashi*,†

Graduate School of Pharmaceutical Sciences, Hokkaido University, a Sapporo 060–0812, Japan and Research Center for Pathogenic Fungi and Microbial Toxicsases, Chiba University, Chiba 260–8673, Japan.

Received January 5, 2000; accepted March 27, 2000

New bis-pyridine alkaloids, pyrinodemins B—D (1—3), have been isolated together with pyrinodemin A (4) and related 3-alkyl pyridine alkaloids 5—8 from the Okinawan marine sponge *Amphimedon* sp. and the structures were elucidated from spectroscopic data. Pyrinodemins B—D (1—3) showed potent cytotoxicity, while compounds 5—8 exhibited antimicrobial activity.

Key words sponge; *Amphimedon* sp.; bis-pyridine alkaloids; cytotoxicity; antimicrobial activity

A number of 3-alkyl pyridine alkaloids have been isolated from marine sponges of several genera.1) Almost of them possessed a long aliphatic chain with a variable nitrogen-containing terminus,2—7) and some had dimeric or polymeric structures of the 3-alkyl pyridine.8—11) During our search for bioactive metabolites from Okinawan marine sponges,12,13) we previously isolated cytotoxic pyridine alkaloids from sponges of the genera *Theonella*14) and *Nephytes*.14—16) More recently, potent cytotoxic bis-pyridine alkaloids with a unique cis-cyclopent[c]isoxazolidine moiety, pyrinodemins B—D (1—3), have been isolated together with pyrinodemin A17) (4) and its related 3-alkyl pyridine alkaloids 5—8 from the Okinawan marine sponge *Amphimedon* sp. Here we describe the isolation and structure elucidation of 1—3 and 5—8, and potent cytotoxicity of 1—3 against tumor cell lines as well as antimicrobial activity of 5—8.

The sponge *Amphimedon* sp. (SS-955) was collected off Nakijin, Okinawa, and extracted with MeOH. EtOAc-soluble materials of the MeOH extract were subjected to silica gel columns (CHCl3–MeOH and then hexane–EtOAc) to afford pyrinodemins B, C, and D (1—3) and some had dimeric or polymeric structures of the 3-alkyl pyridine rings. Proton and carbon chemical shifts of three methines at C-15 (δH 4.05; δC 77.2, d), C-6 (δH 2.83; δC 49.3, d), and C-20 (δH 3.46; δC 72.2, d) corresponded well to those of 4, suggesting the presence of an isoxazolidine ring. The presence of a cyclopent[c]isoxazolidine moiety was deduced from the intense fragment ion peak at *m/z* 270 ([C19H28N2O]+) in the electron impact mass spectrum (EI-MS), which might be generated from 1 through Hoffmann-like elimination of the isoxazolidine ring.19) Detailed analysis of the EI-MS fragmentation pattern (Fig. 1) suggested the presence of the two alkyl chains from C-7 to C-14 and from C-7' to C-19'. In the 1H-NMR spectrum of 4, two olefin proton signals (H-16 and H-17) were observed at δ 5.34 (2H), while such olefin signals were not observed for 1. The cis-ring junction of the bicyclic system was deduced from the nuclear Overhauser effect spectroscopy (NOESY) correlation for H-15/H-16. NOESY correlations of H-15/H-16 and H-15/H-20 indicated that the relative stereochemistry of H-15 and H-16 was cis. Therefore the structure of pyrinodemin B was concluded to be 1.

Pyrinodemins C (2) and D (3) were revealed to have the molecular formulae, C37H32N4O and C39H34N4O, respectively, by the HR-FAB-MS data. The structures of 2 and 3 were elucidated to be analogues lacking one of CH2 units from C-7' to C-16' in the alkyl side chain of pyrinodemin A (4) and from C-7' to C-19' in that of pyrinodemin B (1), respectively, by analyses of 1H-NMR and EI-MS data. The position of the dissubstituted olefin in 2 was assigned to C-15' on the basis of EI-MS fragment ions at *m/z* 190 ([C14H22N3]+) and 217 ([C15H32N3]+), and the Z-geometry of the olefin was implied by the chemical shifts of the allylic carbons (C-14' and C-17', δC ca. 27),20) which were deduced from HMBC cross-peaks.

Compound 5 was shown to have the molecular formula, C36H33N3O, by HREIMS (*m/z* 320.2352 [M]+, δ 0.6 mmu). The 1H- and 13C-NMR spectra suggested that 5 was a monomer 3-alkyl pyridine alkaloid with a dissubstituted double bond. In the 1H- and 13C-NMR spectra, a pair of sp3 carbon signals due to two pyridine rings, sp3 carbon signals due to three methines (C-15, δC 77.2; C-16, δC 49.3; C-20, δC 72.2), one methylene (C-19, δC 57.3) at relatively lower field, and methylenes in a long alkyl chain (δC 26—34). Aromatic proton signals [H-2 and H-2', δH 8.42 (2H); H-4 and H-4', δH 7.48 (2H); H-5 and H-5', δH 7.19 (2H); H-6 and H-6', δH 8.44 (2H)] in the 1H-NMR spectrum suggested the presence of two 3-alkyl-substituted pyridine rings. Proton and carbon chemical shifts of three methines at C-15 (δH 4.05; δC 77.2, d), C-16 (δH 2.83; δC 49.3, d), and C-20 (δH 3.46; δC 72.2, d) corresponded well to...
and EI-MS fragment ion peaks at \(m/z \) 106 and 132. The Z-geometry of the double bond was deduced from the \(^{13}\text{C}\) chemical shifts for the allylic methylene carbons (C-8, \(\delta^C \) 28.8; C-11, \(\delta^C \) 27.1).\(^{20}\) Thus compound 5 was assigned as a 3-alkyl (C14) pyridine with \(E \) and \(Z \)-forms (3:2) at the oxime terminus.

The molecular formula, \(\text{C}_{19}\text{H}_{30}\text{N}_2\text{O} \), of compound 6 was established by HR-EI-MS (\(m/z \) 302.2362 [M], \(\Delta \) +0.4 mmu). \(^1\text{H}\)-NMR data revealed a 3-alkyl pyridine moiety, a disubstituted olefin, and an oxime terminus consisting of a 3:2 mixture of \(E \)- and \(Z \)-forms. The position of the olefin was inferred as C-15–C-16 by EI-MS fragment ion peaks at \(m/z \) 190 and 216 (Fig. 2). This was also supported by EI-MS fragment ions at \(m/z \) 190, 205, and 220 observed for the reduction product (9) of 6 with \(D_2 \). The carbon chemical shifts of C-14 and C-17 (\(\delta^C \) 29.2 and 30.5, respectively) of 6 were indicative of 15Z-geometry.\(^{20}\) Thus compound 6 was elucidated to be a \(\Delta^{15(16)} \) analogue of 5.

Compounds 7 and 8 were revealed to possess the molecular formulae, \(\text{C}_{18}\text{H}_{30}\text{N}_2\text{O} \) and \(\text{C}_{17}\text{H}_{28}\text{N}_2\text{O} \), respectively, by
Table 1. Antimicrobial Activity of Pyrinodemin A (4) and Compounds 5—8

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Candida albicans ATCC 90028</td>
<td>>33</td>
</tr>
<tr>
<td>Cryptococcus neoformans ATCC 900112</td>
<td>33</td>
</tr>
<tr>
<td>Aspergillus niger ATCC 40406</td>
<td>>33</td>
</tr>
<tr>
<td>Paecllyomes varioti YM-1</td>
<td>33</td>
</tr>
<tr>
<td>Trichophyton mentagrophytes ATCC 40769</td>
<td>>33</td>
</tr>
<tr>
<td>Stephyllocus aureus 209P</td>
<td>>33</td>
</tr>
<tr>
<td>Micrococcus luteus IFM 2066</td>
<td>>33</td>
</tr>
<tr>
<td>Bacillus subtilis PCI 189</td>
<td>>33</td>
</tr>
<tr>
<td>Corynebacterium xerosis IFM 2057</td>
<td>>33</td>
</tr>
<tr>
<td>Escherichia coli NIH JC2</td>
<td>>33</td>
</tr>
</tbody>
</table>

Mueller Hinton broth and Sabouraud dextrose broth were used for bacteria and fungi, respectively.
Compound 7: UV \(\lambda_{\text{max}} \) (MeOH) nm (\(\epsilon \)): 264 (3100). IR (neat) cm\(^{-1}\): 3200, 2925, 1575. 1H-NMR (CDCl\(_3\)) \(\delta \): 1.2—1.3 (16H), 1.45 (2H, m), 1.55 (2H, m), 2.19 (1.2H, m), 2.38 (0.8H, m), 2.65 (2H, \(J=7.6 \text{ Hz} \)), 6.71 (0.4H, \(J=5.1 \text{ Hz} \)), 7.21 (1H, \(J=5.6 \text{ Hz} \)), 7.43 (0.6H, \(J=6.0 \text{ Hz} \)), 7.49 (1H, d, \(J=5.6 \text{ Hz} \)), 8.47 (2H, m). EI-MS \(m/z \) (rel. int. %): 93 (100), 106 (93), 120 (28), 134 (12), 148 (18), 162 (29), 176 (33), 190 (16), 204 (22), 218 (24), 232 (78), 273 (9), 290 ([M]\(^{-}\), 4). HR-EI-MS \(m/z \): 290.2337 (Calcd for C\(_{18}\)H\(_{30}\)N\(_2\)O [M]\(^{-}\): 290.2358).

Compound 8: UV \(\lambda_{\text{max}} \) (MeOH) nm (\(\epsilon \)): 264 (3200). IR (neat) cm\(^{-1}\): 3200, 2925, 1575. 1H-NMR (CDCl\(_3\)) \(\delta \): 1.2—1.3 (14H), 1.45 (2H, m), 1.55 (2H, m), 2.19 (1.2H, m, H\(_2\)-17), 2.38 (0.8H, m), 2.65 (2H, \(J=7.6 \text{ Hz} \)), 6.71 (0.4H, \(J=5.1 \text{ Hz} \)), 7.21 (1H, \(J=5.6 \text{ Hz} \)), 7.43 (0.6H, \(J=6.0 \text{ Hz} \)), 7.49 (1H, d, \(J=5.6 \text{ Hz} \)), 8.47 (2H, m). EI-MS \(m/z \) (rel. int. %): 93 (100), 106 (86), 120 (20), 134 (9), 148 (14), 162 (13), 176 (16), 190 (10), 204 (18), 218 (74), 259 (4), 276 ([M]\(^{-}\), 2). HR-EI-MS \(m/z \): 276.2185 (Calcd for C\(_{17}\)H\(_{28}\)N\(_2\)O [M]\(^{-}\): 276.2202).

Reduction of Compound 6
To a solution of compound 6 (0.1 mg) in MeOH-\(d_4 \) (70 \(\mu l \)) was added 5% palladium on activated carbon (10 \(\mu g \)), and the mixture was stirred at room temperature for 1 h under a deuterium atmosphere. After filtration of the catalyst, the filtrate was evaporated in vacuo to afford compound 9 (0.08 mg): HR-EI-MS \(m/z \): 306.2630 (Calcd for C\(_{19}\)H\(_{30}\)D\(_2\)N\(_2\)O [M]\(^{-}\): 306.2638).

Acknowledgments
We thank Mr. Z. Nagahama for his help with sponge collection and Dr. J. Fromont, Western Australian Museum, for identification of the sponge. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes
18) The small amounts of 1—3 obtained from this sponge prevented measurement of their specific rotations.