Synthesis of 3-Epi-6,7-dideoxyxestobergsterol A

Yuko Kaji, Takeshi Koami, Atsuko Nakamura, and Yoshinori Fujimoto*

Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro, Tokyo 152–8551, Japan. Received June 1, 2000; accepted July 17, 2000

3-Epi-6,7-dideoxyxestobergsterol A (2), an analogue of xestobergsterol A, has been synthesized from dehydroepiandrosterone (3) in 15 steps. The key synthetic intermediate, 15β , 16α -dioxypregn-17(20)E-ene derivative 8, was prepared from the corresponding 15β , 16β -epoxide 6 by treating with acetic acid and titanium tetraisopropoxide. The 23-oxo side chain was constructed stereoselectively by orthoester Claisen rearrangement of 8 followed by introduction of an isobutyl group. Basic treatment of the 15,23-diketone 12 followed by deprotection gave the title compound 2.

Key words xestobergsterol A; steroid; synthesis; epoxide; orthoester Claisen rearrangement

Xestobergsterols A (1a) and B (1b) were isolated in 1992 from the sponge *Xestospongia bergquistia*, as unique steroids having a cis C/D ring junction and an additional carbocyclic E-ring.¹⁾ Subsequently, xestobergsterol C (1c) was isolated, and the full structures of these xestobergsterols were established (Fig. 1).²⁾ Xestobergsterols are strong inhibitors of the release of histamine from rat mast cells induced by anti-immunogloblin E (anti-IgE).¹⁾ It has been reported that the mechanism of action of xestobergsterol A is through strong inhibition of phosphatidylinositol phospholipase C.³ Several structurally related steroidal compounds, but devoid of the Ering, i.e., contignasterol, have been isolated from marine sources.⁴⁾ Synthetic approaches toward xestobergsterol A have been reported by Krafft's⁵⁾ and Jung's⁶⁾ groups, and recently the first synthesis of 1a has been completed by the latter group using Breslow's remote functionalization for the introduction of C-15 functionality.⁷⁾ We report herein our approach to the 15-oxo functionalization and the side chain construction starting from dehydroepiandrosterone (3) which led to the synthesis of 3-epi-6,7-dideoxyxestobergsterol A (2), an analogue of xestobergsterol. The route described herein can be applied to the synthesis of xestobergsterols by employing a 17-oxoandrostane derivative having the requisite hydroxy groups in the A.B-ring.

Our retrosynthetic analysis is outlined in Chart 1. Since we decided to use commercially available dehydroepiandrosterone (3) as a starting material for the synthesis of all xestobergsterols, the inversion of 14α -H to 14β -H is required at a certain stage of the synthesis. Based on a series of molecular mechanics (MM2) calculations on various candidates, this inversion appeared possible either at a very early stage, *i.e.*, a 15-en-17-one compound or at the last stage, *i.e.*, an E-ring containing compound.⁸⁾ The C-14 epimerization was indeed embodied by Jung's group, on the basis of a similar consideration of the stability of E-ring containing compounds.⁶⁾ They demonstrated that a basic treatment of a 14α -H-15,23-dioxo compound effected epimerization-aldol condensation to yield a cyclized product having the thermodynamically favorable and correct configurations at C-14, C-16 and C-23. Thus, a 15,23-diketone A was confidently chosen as a precursor of 2. Intentional addition of Δ^{16} to the structure A gave a synthetic precursor, structure **B**. Hydrogenation of the steroidal Δ^{16} is known to occur from the α -face to yield the requisite 17 β -orientation of the side chain.^{9–12)} The 16-ene **B** was expected to be available from a 15-oxygenated allylic alcohol (16-hydroxy-17(20)-ene) **C** through a 3,3-sigmatropic reaction, since such an alcohol without 15-oxygen function, was reported to undergo Carroll¹¹ rearrangement to the product with the correct C-20 configuration. It is known that the stereochemistries, 16 α -alcohol and *E* configuration of $\Delta^{17(20)}$, are essential to obtain the rearranged product **B** with the correct C-20 configuration. It is clear from the foregoing analysis that a simple preparation of the key intermediate **C** is crucial for the success of this retrosynthesis. Fortunately, the corresponding epoxide **D**, a possible precursor of **C**, is known and its synthesis from **3** is well documented.^{9,10,12)} It should be noted the 15-oxy function originates from the epoxide oxygen.

The synthesis of **2** was carried out according to Chart 2. Dehydroepiandrosterone was protected as methoxymethyl ether 4 and the resulting ether was converted to the conjugated enone 5 in a two-step sequence via the enol silvl ether by the Saegusa method.¹³⁾ Epoxidation of the enone with tert-butyl hydroperoxide (TBHP) and benzyltrimethylammonium hydroxide (Triton-B) afforded, as reported previously, the 15β , 16β -epoxide stereoselectively.¹⁰ Wittig olefination of the epoxide using ethyl triphenylphosphonium iodide and *n*-BuLi gave a *ca*. 9:1 mixture of $\Delta^{17(20)}$ -olefin favoring the *E*-isomer as reported previously.^{5c)} Change of the base from n-BuLi to potassium hexamethyldisilazide (KHMDS) gave $\Delta^{17(20)E}$ -olefin 6 free of the Z-isomer. We attempted to open the epoxide ring by attack of a hydroxyl or acetoxy group to obtain a 15,16-dioxy derivative. Although acidic reaction conditions afforded more than several products, treatment of **6** with CsOAc in hexamethylphosphoric triamide $(HMPA)^{14}$ afforded a mixture of the desired 15β -hydroxy- 16α -acetoxy product 7 and its C-16 epimer (ca. 40%). A slightly better

Fig. 1. Structures of Xestobergsterols $(1a\mathcar{-}c)$ and 3-Epi-6,7-dideoxy-xestobergsterol A (2)

^{*} To whom correspondence should be addressed. e-mail: fujimoto@cms.titech.ac.jp Dedicated to the memory of Dr. Kyosuke Tsuda.

Chart 1. Retrosynthetic Analysis of 3-Epi-6,7-dideoxyxestobergsterol (2)

Reagents and conditions: a) MOMCl, *iP*r₂NEt, 99%, b) LDA, TMSCl, e) Pd(OAe)₂, 92% from 4, d) TBHP, Triton-B, 87%, e) Ph₃PEtI, KHMDS, 95%, f) AcOH, Ti(OiPr)₄, 56%, g) MDHP, PPTS, h) LiAlH₄, 82% from 7, i) (EtO)₃CMe, EtCO₂H, 98%, j) DIBAL, k) *i*BuMgBr, 56% from 9, l) H₂, Pd/C, 83%, m) PCC, 94%, n) NaOH, EtOH, 88%, o) 6N HCl, 78%.

Chart 2. Synthesis of 3-Epi-6,7-dideoxyxestobergsterol (2)

result was obtained by the use of ammonium acetate (NH_4OAc) and titanium tetraisopropoxide $[Ti(OiPr)_4]^{15}$ to give compound 7 (42%) and 15 β -hydroxy-16 α -isopropoxy by-product. Further optimization of conditions allowed us to find the use of acetic acid (3 eq) and $\text{Ti}(\text{O}i\text{Pr})_4$ (1.5 eq) in tetrahydrofuran (THF) to reproducibly afford the desired 7 in 55—60% yield from 6. The α -orientation of the 16-acetoxy group in 7 was determined on the basis of nuclear Overhauser effect (NOE) studies in which irradiation of 18-H₂ $(\delta 1.21)$ caused enhancement of the 16 β -H ($\delta 5.23$) signal intensity while the β -orientation of the 15-OH group was assigned from a mechanistic consideration of an epoxide ringopening reaction. Protection of the 15-hydroxyl group of 7 as 4-methoxytetrahydropyran-4-yl (MTHP) ether followed by removal of the 16-acetyl group gave the key intermediate 8 desired for the side chain introduction. The 15β -hydroxyl group appeared to be substantially sterically hindered since an attempted conversion to tert-butyldimethylsilyl (TBS) ether under standard conditions (TBSCl/imidazole or tertbutyldimethylsilyl trifluoromethanesulfonate (TBSOTf)/lutidine) failed and gave only recovered starting material.

Encouraged by a known example of a 3,3-sigmatropic reaction of a steroidal 16α -hydroxy- $\Delta^{17(20)E}$ system,¹¹ the allylic alcohol **8** was subjected to the conditions of orthoester Claisen rearrangement (triethyl orthoacetate, propionic acid, heating in xylene), which gave rise to the rearranged ester **9** as a single isomer in quantitative yield. Carroll rearrangement of **8** using 5-isovaleryl Meldrum's acid¹¹ did not succeed, although the $16-(\beta$ -keto) ester was obtained in good yield. The side chain of **9** was extended *via* the aldehyde to yield 23-ol **10** as a *ca.* 1 : 1 epimeric mixture at the C-23 position. Hydrogenation of 10 proceeded stereoselectively to yield the saturated product 11 with β -orientation of the sidechain. It should be noted that the MTHP protecting group was cleaved under the hydrogenation conditions (H₂/10% Pd-C). Similar cleavage of the MTHP group under the same hydrogenation condition was also observed for compound 9. PCC oxidation of the diol 11 furnished the diketone 12, whose structure including 14α -H, 17α -H and 20R stereochemistry was established from comparison of the NMR data with those reported for the corresponding 3-TBS ether.^{5c)} As expected from earlier work by Jung's^{6,7)} and Krafft's^{5c)} groups, treatment of the diketone 12 with NaOH/ethanol (EtOH) afforded the pentacyclic compound 13 in good yield without formation of any other stereoisomers. The ¹H- and ¹³C-NMR data of **13** were essentially identical with those reported for the corresponding 3-TBS ether^{5c)} except for the signals around the C-3 positions. Final deprotection of 13 under acidic conditions completed the synthesis of the target compound 2. The ¹H- and ¹³C-NMR data for 2, in comparison with those reported for 7-deoxyxestobergsterol A⁶ and xestobergsterol A,²⁾ confirmed the synthetic analogue to have the natural C-14,C-16 C-17 and C-23 configurations.

In conclusion, we have developed a relatively simple synthetic route leading to the construction of the E-ring found in xestobergsterols, which is characterized by an appropriate use of compound **8** readily available from the corresponding epoxide **6**. We previously developed a method of preparation of $3\alpha, 6\alpha, 7\beta$ -trihydroxyandrostan-17-one.⁸⁾ The synthesis of xestobergsterol A by combining the latter method with the present approach is in progress in our laboratory.

Experimental

General Methods Melting points were determined on a Yazawa hotstage melting point apparatus and were uncorrected. NMR spectra were obtained on a JEOL JNM-LA300 (300 MHz for ¹H and 75 MHz for ¹³C) or JEOL JNM-LA400 (400 MHz for ¹H and 100 MHz for ¹³C) spectrometer in CDCl₃ solutions, unless otherwise noted. ¹H chemical shifts are given in ppm relative to tetramethylsilane δ 0.00) and ¹³C chemical shifts are shown relative to the solvent (δ 77.00). Merck Kieselgel 60 was used for column chromatography.

3β-(Methoxymethoxy)androst-5-en-17-one (4) *i*-Pr₂NEt (10.6 ml, 60.8 mmol) and chloromethyl methyl ether (3.95 ml, 52.0 mmol) were added to a solution of **3** (5.00 g, 17.3 mmol) in dry CH₂Cl₂ (40 ml) at 0 °C under N₂, and the mixture was stirred at the same temperature for 30 min and then at room temperature for 3 h. CH₂Cl₂ and 2 N HCl were added to the mixture, and the separated CH₂Cl₂ layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄, and concentrated to dryness. The residue was chromatographed on silica gel with hexane–AcOEt (7 : 1) to give **4** (5.70 g, 99%) as white needles, mp 131—132 °C (from hexane–AcOEt). ¹H-NMR δ: 0.89 (s, 18-H₃), 1.04 (s, 19-H₃), 3.38 (s, OCH₃), 3.43 (m, 3α-H), 4.69 (s, OCH₂O), 5.39 (m, 6-H). ¹³C-NMR δ: 13.48, 19.33, 20.29, 21.82, 28.81, 76.71, 94.66, 120.89, 140.95, 220.90. *Anal.* Calcd for C₂₁H₃₂O₃: C, 75.86; H, 9.70. Found: C, 76.03; H, 9.90.

3β-(Methoxymethoxy)androsta-5,15-dien-17-one (5) A solution of 4 (5.70 g, 17.1 mmol) in dry THF (35 ml) was added at -78 °C under N₂ to a solution of LDA [prepared from diisopropylamine (3.84 ml, 27.4 mmol) in dry THF (20 ml) and *n*-BuLi (1.50 N solution in hexane, 17.1 ml, 25.7 mol)]. The mixture was stirred at the same temperature for 1 h, then chlorotrimethylsilane (4.35 ml, 34.3 mmol) was added. The mixture was warmed up to room temperature over a period of 20 min with stirring. Ether and saturated aqueous NH₄Cl were added. The separated organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄, and concentrated to give the crude enol TMS ether (7.4 g) as a yellow solid.

Palladium (II) acetate (3.85 g, 17.1 mmol) was added to a solution of the enol ether in CH₃CN (60 ml) and the mixture was stirred for 14 h. The mixture was filtered through a pad of Celite and the filtrate was concentrated to give a crude product which was chromatographed on silica gel with hexane–AcOEt (7:1) to afford **5** (5.20 g, 92%) as white needles, mp 130–132 °C (from hexane–AcOEt). ¹H-NMR δ : 1.09 (s, 18-H₃, 19-H₃), 3.38 (s, OCH₃), 3.44 (m, 3 α -H), 4.70 (s, OCH₂O), 5.41 (m, 6-H), 6.05 (dd, *J*=5.9, 3.2 Hz, 16-H), 7.50 (dd, *J*=5.2, 1.2 Hz, 15-H). ¹³C-NMR δ : 19.30, 19.93, 20.08, 28.76 (×2), 28.99, 30.58, 36.92, 37.00, 39.48, 50.66, 51.24, 55.16, 57.23, 76.58, 94.66, 120.37, 131.83, 141.44, 158.53, 213.08. *Anal.* Calcd for C₂₁H₄₀O₄: C, 76.33; H, 9.15. Found: C, 76.39; H, 9.32.

15*β*, **16***β*-Epoxy-3*β*-(methoxymethoxy)androst-5,17(20)*E*-diene (6) Triton B (40% aqueous solution, 8.36 ml, 21.2 mmol) and TBHP (90% aqueous solution, 4.66 ml, 41.9 mmol) were added to a solution of **5** (4.84 g, 14.7 mmol) in THF (44 ml) at -20 °C, and the mixture was stirred for 15 min at the same temperature. Ether and aq. Na₂S₂O₃ were added, and the separated ether layer was washed with saturated aqueous NH₄Cl, saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄, and concentrated. The residue was chromatographed on silica gel with hexane–AcOEt (7:1) to give the epoxide (4.41 g, 87%) as white crystals, mp 131—133 °C (from hexane–AcOEt). ¹H-NMR δ: 1.07 (s, 18-H₃), 1.17 (s, 19-H₃), 3.31 (d, *J*=2.9 Hz, 15α-H), 3.38 (s, OCH₃), 3.44 (m, 3α-H), 3.82 (d, *J*=2.9 Hz, 16α-H), 4.70 (s, 0CH₂O), 5.42 (m, 6-H). ¹³C-NMR δ: 18.91, 19.17, 19.90, 28.51, 28.75, 30.15, 32.74, 36.94, 36.99, 39.45, 41.88, 51.07, 52.93, 53.39, 55.20, 55.66, 76.58, 94.68, 120.25, 141.48, 213.23. *Anal.* Calcd for C₂₁H₃₀O₄: C, 72.80; H, 8.73. Found: C, 72.85; H, 9.03.

To a suspension of ethyltriphenylphosphonium iodide (11.4 g, 27.3 mmol) in THF (10 ml) was added potassium hexamethyldisilylazide (0.52 M toluene solution, 45.6 ml, 15.4 mmol) at 0 °C under N₂, and the mixture was stirred at the same temperature for 30 min. The mixture was cooled to -20 °C, and a solution of the epoxide **12** (3.81 g, 11.0 mmol) in THF (3.0 ml) was added and stirring was continued for 15 min. Ether and brine were added and the ether layer was dried over Na₂SO₄ and concentrated to give a yellow solid. This was suspended in hexane, and the insoluble portion was removed and concentrated to give **6** (3.74 g, 95%) as a white solid, mp 149—152 °C. ¹HNMR δ : 1.06 (s, 18-H₃), 1.15 (s, 19-H₃), 1.75 (d, *J*=7.3 Hz, 21-H₃), 3.38 (s, OCH₃), 3.43 (m, 3\alpha-H), 3.48 (d, *J*=3.2 Hz, 15\alpha-H), 3.61 (d, *J*=3.2 Hz, 16\alpha-H), 4.70 (s, OCH₂O), 5.41 (m, 6-H), 5.71 (q, *J*=7.1 Hz, 20-H). ¹³C-NMR δ : 13.45, 19.11, 20.86, 22.38, 28.16, 28.83, 31.26, 36.96, 37.05, 37.98, 39.39, 39.51, 51.12, 55.13, 57.10, 57.75, 58.94, 76.79, 94.67, 120.87, 121.80, 141.24, 146.24. *Anal.* Calcd for C₂₃H₃₄O₃: C, 77.05; H, 9.56. Found:

C, 77.11; H, 9.85.

16α-Acetoxy-15β-Hydroxy-3β-(methoxymethoxy)androst-17(20)*E*-ene (7) Ti(*Oi*Pr)₄ (4.86 ml, 16.5 mmol) and acetic acid (1.88 ml, 32.8 mmol) were added to a solution of **6** (3.60 g, 10.0 mmol) and the mixture was stirred for 2 h. Ether and saturated aqueous NaHCO₃ were added, and the organic layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was chromatographed on silica gel with hexane–AcOEt (7:1) to give **7** (2.34 g, 56%) as white plates, mp 148—150 °C (from hexane–AcOEt). ¹H-NMR δ: 1.05 (s, 19-H₃), 1.21 (s, 18-H₃), 1.77 (d, *J*=7.3 Hz, 21-H₃), 2.11 (s, OAc), 3.37 (s, CH₃O), 3.45 (m, 3α-H), 3.97 (d, *J*=5.6 Hz, 15β-H), 4.69 (s, OCH₂O), 5.23 (s, 16α-H), 5.37 (m, 6-H), 5.49 (dq, *J*=7.1 Hz, 20-H). ¹³C-NMR δ: 13.14, 19.09, 20.29, 20.89, 21.23, 27.27, 28.86, 30.69, 36.78, 37.15, 38.22, 39.46, 44.03, 50.35, 55.12, 57.38, 76.28, 76.84, 85.09, 94.64, 119.47, 121.20, 140.65, 147.31, 171.80. *Anal.* Calcd for C₂₅H₃₈O₅: C, 71.74; H, 9.15. Found: C, 71.59; H, 9.24.

16 α -Hydroxy-15 β -(4-methoxytetrahydropyran-4-yloxy)-3 β -(methoxymethoxy)-androsta-5,17(20)E-diene (8) 5,6-Dihydro-4-methoxy-2Hpyran (855 µl, 7.65 mmol) and pyridinium p-toluenesulfonate (48 mg, 0.19 mmol) were added to a solution of 7 (1.60 g, 3.82 mmol) in dry CH₂Cl₂ (16 ml) and the mixture was stirred for 13 h. AcOEt and saturated aqueous NaHCO3 were added, and the organic layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was chromatographed on silica gel with hexane-AcOEt (5:1) to give the ether (1.9 g, 93%) as an oil. ¹H-NMR δ : 1.07 (s, 19-H₂), 1.25 (s, 18-H₂), 1.75 (dd, J=9.4 Hz, 21-H₂), 2.04 (s, OAc), 3.21(s, CH₃O), 3.38 (s, CH₃O), 3.44 (m, 3α-H), 3.35-3.82 (m, 3α -H, 2,4-H₄ of MTHP), 4.00 (d, J=5.5 Hz, 15 α -H), 4.70 (s, OCH₂O), 5.38 (m, 6-H), 5.61 (m, 16 β -H, 20-H). ¹³C-NMR δ : 13.73, 19.16, 20.31, 20.92, 21.44, 27.15, 28.84, 31.24, 34.35, 34.46, 36.99, 37.18, 38.62, 39.46, 43.37, 48.47, 50.48, 55.16, 57.38, 64.98, 65.12, 74.40, 76.83, 81.19, 94.65, 98.77, 121.14, 123.65, 140.98, 149.23, 170.34. Anal. Calcd for C31H48O7: C, 69.89; H, 9.08. Found: C, 69.76; H, 8.95.

LiAlH₄ (203 mg, 5.35 mmol) was added to a solution of the ether (1.90 g, 3.57 mmol) in ether (19 ml) at 0 °C under N₂ and the mixture was stirred for 10 min. Ether and 2 N HCl were added, the organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄ and concentrated to dryness. The residue was chromatographed on silica gel with hexane–AcOEt (2 : 1) to give **8** (1.54 g, 88%) as a colorless amorphous solid. ¹H-NMR δ : 1.06 (s, 19-H₃), 1.20 (s, 18-H₃), 1.77 (d, *J*=7.2 Hz, 21-H₃), 3.18 (s, CH₃O), 3.38 (s, CH₃O), 3.35—3.82 (m, 3\alpha-H, 2,4-H₄ of MTHP), 4.02 (d, *J*=5.6 Hz, 15\alpha-H), 4.45 (brs, 16β-H), 4.69 (s, OCH₂O), 5.37 (m, 6-H), 5.60 (q, *J*=7.2 Hz, 20-H). ¹³C-NMR δ : 13.45, 19.15, 20.18, 20.87, 27.19, 28.82, 31.13, 34.57 (×2), 36.91, 37.13, 38.67, 39.45, 43.71, 48.33, 50.49, 55.13, 56.57, 64.90, 65.07, 76.80, 76.86, 79.92, 94.61, 98.63, 120.12, 121.33, 140.77, 153.96. *Anal.* Calcd for C₂₉H₄₆O₆: C, 70.99; H, 9.45. Found: C, 70.86; H, 9.68.

Ethyl 15β-(4-Methoxytetrahydropyran-4-yloxy)-3β-(methoxymethoxy)-24-norchola-5,16-dien-23-oate (9) Ethyl orthoacetate (2.86 ml, 15.6 mmol) and propionic acid (140 μ l, 1.88 mmol) were added to a solution of **8** (1.53 g, 3.12 mmol) in xylene (15 ml). After the mixture was stirred at 130 °C for 30 min, it was concentrated under reduced pressure. Purification of the crude product on silica gel with hexane–AcOEt (7 : 1) afforded **9** (1.71 g, 98%) as an oil. ¹H-NMR δ : 1.04 (d, J=6.8 Hz, 21-H₃), 1.09 (s, 19-H₃), 1.15 (s, 18-H₃), 1.26 (t, J=7.1, 7.2 Hz, 21-H₃), 2.76 (m, 20-H), 3.11 (s, CH₃O), 3.38 (s, CH₃O), 3.35—3.82 (m, 3α-H, 2,4-H₄ of MTHP), 4.10 (q, J=7.2 Hz, OEt), 4.40 (dd, J=5.4, 2.9 Hz, 15α-H), 4.70 (s, OCH₂O), 5.38 (m, 6-H), 5.57 (d, J=1.7 Hz, 16-H). ¹³C-NMR δ : 14.20, 19.18, 20.53, 21.11, 21.47, 27.61, 28.68, 28.85, 30.96, 34.55, 34.76, 35.05, 37.02, 37.15, 39.50, 41.56, 47.34, 48.35, 51.05, 55.15, 59.80, 60.23, 64.90, 65.16, 71.52, 76.78, 94.63, 97.89, 121.49, 124.24, 140.97, 163.45, 172.49. *Anal.* Calcd for C₃₃H₅₂O₇: C, C, 70.68; H, 9.35. Found: C, 70.88; H, 9.10.

(23*RS*)-15 β -(4-Methoxytetrahydropyran-4-yloxy)-3 β -(methoxymethoxy)cholesta-5,16-dien-23-ol (10) DIBAL (1.01 N solution in toluene, 2.39 ml, 2.41 mmol) was added to a solution of 9 (1.50 g, 2.67 mmol) in dry toluene (15 ml) at -78 °C under N₂ and the mixture was stirred for 30 min at the same temperature. Ether and saturated aqueous NH₄Cl were added, and the organic layer was washed with saturated aqueous NH₄Cl were added, and the organic layer was washed with saturated aqueous NH₄Cl were (1.28 g) as an oil. ¹H-NMR δ : 1.08 (d, *J*=6.8 Hz, 21-H₃), 1.09 (s, 19-H₃), 1.16 (s, 18-H₃), 2.51 (ddd, *J*=16.2, 7.7, 1.9 Hz, 22-Ha), 2.67 (ddd, *J*=16.2, 7.0, 1.9 Hz, 22-Hb), 2.82 (m, 20-H), 3.09 (s, CH₃O), 3.38 (s, CH₃O), 3.36— 3.82 (m, 3 α -H, 2,4-H₄ of MTHP), 4.41 (dd, *J*=5.2, 2.8 Hz, 15 α -H), 4.70 (s, OCH₂O), 5.38 (m, 6-H), 5.58 (d, *J*=2.0 Hz, 16-H), 9.73 (t, *J*=1.9 Hz, CHO). ¹³C-NMR δ : 19.17, 20.55, 21.33, 21.76, 26.63, 27.60, 28.86, 30.90, 34.47, 34.77, 35.09, 37.01, 37.16, 39.48, 47.36, 48.43, 50.20, 51.02, 55.14, 59.81, 64.87, 65.15, 71.47, 76.76, 94.62, 97.97, 121.44, 124.96, 140.96, 163.04, 202.09.

Isobutylmagnesium bromide solution, prepared from Mg (130 mg, 5.35 mmol) and isobutyl bromide (582 μ l, 5.35 mmol) in THF (8 ml), was added to a solution of the aldehyde (1.28 g) in THF (10 ml) under N₂ and the mixture was stirred for 40 min. Ether and 2 N HCl were added, and the aqueous layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄ and concentrated to dryness. The residue was chromatographed on silica gel with hexane–AcOEt (3 : 1) to give **10** (861 mg, 56% from **9**) as an oil. ¹H-NMR δ : 0.86—0.94 (m, 26-H₃, 27-H₃), 1.01 (d, *J*=6.8 Hz, 21-H₃), 1.09 (s, 19-H₃), 1.149, 1.154 (s, 18-H₃), 3.13, 3.14 (s each, CH₃O), 3.38 (S, CH₃O), 3.38—3.82 (m, 3 α -H, 2,4-H₄ of MTHP, 23-H), 4.42 (br s, 15 α -H), 4.70 (s, OCH₂O), 5.39 (m, 6-H), 5.53, 5.58 (d each, *J*=1.7 Hz, 16-H). ¹³C-NMR δ : 51.06, 51.12, 55.12, 64.88, 64.90, 65.13, 65.16, 71.64, 71.68, 76.78, 94.59, 97.88, 120.51, 123.83, 123.96, 140.93, 164.76, 165.20. *Anal.* Calcd for C₃₅H₅₈O₆: C, 73.13; H, 10.17. Found: C, 73.00; H, 10.32.

(23*RS*)-3β-(Methoxymethoxy)cholestane-15β,23-diol (11) A solution of 10 (690 mg, 1.20 mmol) in AcOEt (7 ml) containing 10% Pd/C (Kojima Chemicals Co. Ltd., 200 mg) was stirred under an atmospheric pressure of H₂ for 40 h. The mixture was filtered through a pad of Celite and the filtrate was concentrated to dryness. The residue was chromatographed on silica gel with hexane–AcOEt (3 : 1) to give 11 (462 mg, 83%) as amorphous solid. ¹H-NMR δ: 0.84 (s, 19-H₃), 0.91 (d each, J=6.7 Hz, 26, 27-H₃), 0.95 (s, 18-H₃), 0.96 (d, J=6.7 Hz, 21-H₃), 2.41 (m, 20-H), 3.37 (s, CH₃O), 3.50 (m, 3α-H), 3.76 (m, 23-H), 4.17 (m, 15α-H), 4.68 (s, OCH₂O). ¹³C-NMR δ: 12.15, 14.63, 14.76, 18.58, 19.20, 21.00, 21.54, 22.24, 23.20, 23.96, 24.32, 24.58, 28.54, 28.59, 31.26, 31.30, 31.34, 31.37, 32.08, 33.46, 35.09, 35.65, 36.90 41.12, 41.17, 41.33, 41.36, 42.23, 42.32, 44.32, 44.87, 44.89, 44.98, 46.26, 47.91, 54.66, 54.69, 55.04, 57.07, 60.86, 60.93, 66.73, 68.29, 70.11, 70.12, 76.18, 94.37. *Anal.* Calcd for C₂₉H₅₂O₄: C, 74.95; H, 11.28. Found: C, 74.75; H, 11.43.

3β-(Methoxymethoxy)cholestane-15,23-dione (12) PCC (820 mg, 3.81 mmol) and Celite (1.0 g) were added to a solution of 11 (442 mg, 0.951 mmol) in dry CH₂Cl₂ (11 ml) and the mixture was stirred for 2 h. Dry ether (55 ml) was added and the suspension was filtered through a pad of Celite. Concentration of the filtrate gave a crude product which was chromatographed on silica gel with hexane–AcOEt (7 : 1) to give 12 (411 mg, 94%) as white crystals, mp 134—136 °C (from hexane–AcOEt). ¹H-NMR δ: 0.78 (s, 18-H₃), 0.81 (s, 19-H₃), 0.90 (d, *J*=6.6 Hz, 26-H₃), 0.91 (d, *J*=6.6 Hz, 27-H₃), 0.99 (d, *J*=6.6 Hz, 21-H₃), 2.65 (m, 7β-H), 3.36 (s, CH₃O), 3.49 (m, 3-H), 4.67 (s, OCH₂O). ¹³C-NMR δ: 12.06, 12.96, 20.10, 20.64, 22.44, 22.55, 24.46, 28.20, 28.55, 30.53, 31.64, 31.80, 35.00, 35.62, 36.87, 39.65, 41.65, 42.34, 44.72, 49.76, 51.04, 52.52, 53.80, 55.04, 65.81, 76.01, 94.42, 210.06, 214.97. *Anal.* Calcd for C₂₉H₄₈O₄: C, 75.61; H, 10.50. Found: C, 75.38; H, 10.73.

3β-(Methoxymethoxy)-3-Epi-6,7-dideoxyxestobergsterol (13) 2 N NaOH (0.38 ml) was added to a solution of 12 (200 mg, 0.434 mmol) in EtOH (6.6 ml) and THF (2.8 ml) and the mixture was stirred for 37 h. Ether and saturated aqueous NH₄Cl were added. The organic layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was chromatographed on silica gel with hexane–AcOEt (10:1) to give 13 (175 mg, 88%) as white needles, mp 116—117 °C (from MeOH) ¹H-NMR δ: 0.76 (s, 19-H₃), 0.95 (d, J=6.8 Hz, 26-H₃), 0.97 (d, J=6.8 Hz, 27-H₃), 1.10 (d, J=6.4 Hz, 21-H₃), 1.13 (s, 18-H₃), 2.11 (t, J=3.1 Hz, 14β-H), 2.28 (m, 20-H), 2.49 (td, J=9.1, 4.9 Hz, 7α-H), 2.61 (d, J=9.8 Hz, 16α-H), 3.36 (s,

3-Epi-6,7-dideoxyxestobergsterol (2) 6 N-HCl (0.2 ml) was added to a solution of 13 (124 mg, 0.269 mmol) in THF (2.0 ml) and the mixture was stirred for 48 h. Ether and saturated aqueous NaHCO₂ were added, and the organic layer was washed with brine, dried over Na2SO4 and concentrated to dryness. The residue was chromatographed on silica gel with hexane-AcOEt (3:1) to give 2 (78 mg, 78%) as white needles, mp 97-98 °C (from MeOH). ¹H-NMR (pyridine-d₅, chemical shifts are given relative to H-2 of the residual solvent, δ =7.19) δ : 0.74 (s, 19-H₃), 0.95 (d, J=6.5 Hz, 27-H₃), 1.00 (d, J=6.5 Hz, 26-H₂), 1.12 (d, J=6.5 Hz, 21-H₂), 1.14 (s, 18-H₂), 2.49 (brs, H-14), 2.61 (m, 20-H), 2.67 (d, J=10.0 Hz, 16α-H), 2.78 (m, 7α-H), 3.77 (m, 3 α -H). ¹³C-NMR (pyridine- d_5 , chemical shifts are given relative to C-3 of the solvent, $\delta = 123.50$) δ : 12.22 (C-19), 19.81 (C-21), 20.87 (C-18), 21.62 (C-11), 24.66 (C-26), 24.82 (C-25), 25.12 (C-27), 29.45 (C-6), 29.45 (C-7), 32.20 (C-2), 32.91 (C-12), 34.98 (C-20), 35.78 (C-10), 37.35 (C-1), 38.63 (C-4), 38.67 (C-8), 39.33 (C-13), 44.42 (C-5), 47.45 (C-9), 51.63 (C-22), 51.92 (C-24), 56.64 (C-14), 57.63 (C-17), 62.90 (C-16), 70.47 (C-3), 82.01 (C-23), 217.20 (C-15). Anal. Calcd for C₂₇H₄₄O₃: C, 77.84; H, 10.64. Found: C, 77.61; H, 10.90.

References and Notes

- Shoji N., Umeyama A., Shin K., Takeda K., Arihara S., Kobayashi J., Takei M., J. Org. Chem., 57, 2996–2997 (1992).
- Kobayashi J., Shinonaga H., Shigemori H., Umeyama A., Shoji N., Arihara S., J. Nat. Prod., 58, 312–318 (1995).
- Takei M., Umeyama A., Shoji N., Arihara S., Endo K., *Experientia*, 49, 145—149 (1993).
- a) Burgoyne D. L., Andersen R. J., Allen T. M., J. Org. Chem., 57, 525—528 (1992); b) Sperry S., Crews P., J. Nat. Prod., 60, 29—32 (1997); c) Fu X., Ferreira M. L. G., Schmitz F. J., Kelly M., J. Org. Chem., 64, 6706—6709 (1999).
- a) Krafft M. E., Chirico X., *Tetrahedron Lett.*, **35**, 4511–4514 (1994);
 b) Krafft M. E., Shao B., Dasse O. A., *Tetrahedron*, **54**, 7033–7044 (1998);
 c) Krafft M. E., Dasse O. A., Fu Z., *J. Org. Chem.*, **64**, 2475–2485 (1999).
- Jung M. E., Johnson T. W., J. Am. Chem. Soc., 119, 12412–12413 (1997),
- 7) Jung M. E., Johnson T. W., Org. Lett., 1, 1671-1674 (1999).
- Presented in the 74th Annual meeting of the Chemical Society of Japan, March, 1998, Kyoto, Abstract, p. 1085.
- 9) Marino J. P., Abe H., J. Am. Chem. Soc., 103, 2907-2909 (1981).
- Takahashi T., Ootake A., Tsuji J., Tachibana K., *Tetrahedron*, 41, 5747—5754 (1985).
- 11) Tanabe M., Hayashi K., J. Am. Chem. Soc., 102, 862-863 (1980).
- 12) Liu D., Stuhmiller L. M., McMorris T. C., J. Chem. Soc. Perkin Trans. 1, 1988, 2161–2167.
- 13) Ito Y., Hirao T., Saegusa T., J. Org. Chem., 43, 1011-1013 (1978).
- 14) Trost B. M., Krische M. J., J. Am. Chem. Soc., 118, 233-234 (1996).
- 15) Caron M., Sharpless K. B., J. Org. Chem., 50, 1560-1563 (1985).