Studies on the Constituents of *Clematis* **Species. VIII.1) Triterpenoid Saponins from the Aerial Part of** *Clematis tibetana* **KUNTZ²⁾**

Yukio KAWATA, Haruhisa KIZU,* Yukinori MIYAICHI, and Tsuyoshi TOMIMORI

Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920–1181, Japan. Received November 20, 2000; accepted February 10, 2001

From the aerial part of *Clematis tibetana***, two new hederagenin 3,28-***O***-bisdesmosides called clematibetosides A and C, and a new gypsogenin 3,28-***O***-bisdesmoside called clematibetoside B, have been isolated together with ten known saponins. The structures of the new saponins have been elucidated based on chemical and spectral evidence as follows: clematibetoside A, 3-***O***-(2-***O***-caffeoyl)-**b**-D-glucopyranosyl-(1**→**4)-**b**-D-glucopyranosyl- (1**→**4)-**b**-D-ribopyranosyl-(1**→**3)-**a**-L-rhamnopyranosyl-(1**→**2)-**a**-L-arabinopyranosyl hederagenin 28-***O***-**a**-Lrhamnopyranosyl-(1**→**4)-**b**-D-glucopyranosyl-(1**→**6)-**b**-D-glucopyranoside; clematibetoside B, 3-***O***-**a**-L-rhamnopyranosyl-(1**→**2)-**a**-L-arabinopyranosyl gypsogenin 28-***O***-**a**-L-rhamnopyranosyl-(1**→**4)-**b**-D-glucopyranosyl-(1**→**6)** b**-D-glucopyranoside; clematibetoside C, 3-***O***-**b**-D-ribopyranosyl hederagenin 28-***O***-**a**-L-rhamnopyranosyl-(1**→**4)** b**-D-glucopyranosyl-(1**→**6)-**b**-D-glucopyranoside.**

Key words *Clematis tibetana*; clematibetoside; saponin; hederagenin bisdesmoside; gypsogenin bisdesmoside; Ranunculaceae

As a continuation of our study on the constituents from *Clematis* species,¹⁾ the dried aerial part of *C. tibetana* KUNTZ that was collected in central Nepal has been investigated. The water-soluble portion of a hot MeOH extract was successively extracted with hexane, EtOAc, and *n*-BuOH. The *n*-BuOH-soluble fraction was subjected to repeated chromatography to give thirteen compounds (**1**—**13**), including three new ones, named clematibetosides A (**1**), B (**6**) and C (**12**) as described in the experimental section.

Compounds **2**, **3**, **4**, **5**, **7**, **8**, **9**, **10**, **11** and **13** were identified as huzhangoside D,³⁾ hederasaponin C,⁴⁾ CP₆⁵ α -hederin,⁶⁾ CP₁₀⁷) hederasaponin B,⁴⁾ HN saponin H,⁸⁾ kizutasaponin $K_{10}^{(9)}$, CP₈³ and dipsacoside B₁^{9,10} respectively, by direct comparison with the respective authentic samples.

Clematibetoside A (**1**) was obtained as a yellow amorphous powder and gave hederagenin, glucose, rhamnose, arabinose and ribose on acid hydrolysis. The ¹³C-NMR spectrum of **1** showed eight anomeric carbon signals together with signals assignable to a 3,4-dihydroxycinnamoyl (caffeoyl) group. The ¹H-NMR and UV spectra of 1 also supported the presence of a caffeoyl group. The molecular formula of 1 was determined as $C_{85}H_{130}O_{43}$ from high resolution (HR) FAB-MS and 13C-NMR spectral data. Compound **1** was hydrolyzed with mild alkali, 0.1 N KOH aq., at room temperature to give a deacylated compound (**1a**) and caffeic acid. Compound **1a** was identified as the deacylated compound of clematernoside C by direct comparison.1) Therefore, **1** was a monocaffeate of deacylated clematernoside C. The assignments of proton and carbon signals due to the sugar moiety of **1** and **1a** were determined by comparison with those of the clematernoside group¹⁾ and were confirmed based on the 1 H- 1 H correlation spectroscopy (COSY) and 1 H- 13 C COSY spectral data. In comparison of the ¹H- and ¹³C-NMR data for **1** with those for **1a**, the H-2 and C-2 signals of the terminal glucose moiety (Glc⁴) in **1** were observed at a lower field by 1.68 and 0.3 ppm, respectively, and the C-1 and C-3 signals of $Glc⁴$ at a higher field by 2.3 and 1.8 ppm, respectively, than the corresponding signals in **1a** (Table 1). These results show that the caffeoyl group in **1** is connected to the C-2 position of the terminal glucose moiety. Furthermore, the 13 C- NMR signals due to the terminal glucose unit of **1** were found at almost the same positions with those in clematernoside C. From these facts, the structure of clematibetoside A (1) was concluded to be $3-O-(2-O\text{-}caffeoyl)-\beta-D\text{-}glucopy$ ranosyl- $(1\rightarrow4)$ - β -D-glucopyranosyl- $(1\rightarrow4)$ - β -D-ribopyranosyl- $(1\rightarrow 3)$ - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - α -L-arabinopyranosyl hederagenin 28 -*O*- α -L-rhamnopyranosyl- $(1\rightarrow4)$ - β -Dglucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside.

Clematibetoside B (6), $C_{59}H_{94}O_{26}$, showed signals due to a formyl group [δ 9.96 (d, $J=2$ Hz) in ¹H-NMR and δ 207.6 (d) in 13 C-NMR] and five anomeric carbon signals in its 13 C-NMR spectrum. 6 gave gypsogenin,¹¹⁾ glucose, rhamnose and arabinose on acid hydrolysis; moreover the proton and carbon signals due to the sugar moieties in **6** were observed at almost the same positions as those in **3** and **8**. Therefore, **6** was concluded to be a gypsogenin bisdesmoside possessing the same sugar moieties as **3** and **8**.

Clematibetoside C (12), $C_{53}H_{86}O_{22}$, gave hederagenin, glucose, rhamnose and ribose on acid hydrolysis. Comparison of the ¹ H- and 13C-NMR data for **12** with those for **2** and **9**, suggested that **12** possessed an α -L-rhamnopyranosyl- $(1\rightarrow4)$ - β -D-glucopyranosyl-(1→6)- β -D-glucopyranosyloxy group at the C-28 position and a ribopyranosyloxy group at C-3. (Tables 1, 2) In order to clarify the anomeric configuration of the ribopyranosyl unit, 12 was hydrolyzed by alkaline. In the ¹H-NMR spectrum of the resulting prosapogenin (**12a**), the coupling constants $J_{H-1,H-2}$, $J_{H-4,H-5}$ and $J_{H-4,H-5}$ in the ribopyranosyl unit were observed as 4, 3 and 5 Hz, respectively. These data were in agreement with those of methyl β -D-ribopyranoside (Table 3).¹²⁾ In addition, the carbon signals assignable to the ribopyranosyl unit in **12a** were observed at almost the same positions as methyl β -D-ribopyranoside (Table 3). Based on these results, the structure of clematibetoside C (12) was concluded to be $3-O$ - β -D-ribopyranosyl hederagenin 28 -*O*- α -L-rhamnopyranosyl- $(1\rightarrow4)$ - β -D-glucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside (Chart 1).

Experimental

General Procedures NMR spectra were taken in pyridine- d_5 on a JEOL GSX-400 spectrometer (1 H-NMR at 400 MHz and 13 C-NMR at 100 MHz), using the residual signals of the solvent as an internal standard: pyridine- d_5 ,

 $\delta_{\rm C}$ 123.5, $\delta_{\rm H}$ 7.20 (β -OH). MS were taken on a JEOL JMS-SX-102A mass spectrometer, using triethanolamine as a matrix. UV spectra were taken in MeOH on a Shimadzu dual-wavelength/doublebeam recording spectrophotometer. Samples for IR spectra were prepared as a KBr disk and the spectra were taken on a HORIBA FT-720 FT-IR spectrophotometer. Optical rotation was measured by a JASCO DIP-370 digital polarimeter. The HPLC system was composed of TOSO CCPE pump with recycling valve and a JASCO 875 UV detector. For TLC, pre-coated plates of Silica gel $60F_{254}$, RP-18 and HP Silica gel $60F_{254}$ (Merck) were used.

Medium pressure liquid chromatography (MPLC) was conducted on an octadecyl silica (ODS) column [stuffed Cosmosil $140C_{18}$ OPN in 500 mm \times 45 mm i.d., mobile phase, MeOH-propanol-H₂O (5:1:6) (MPLC-1); stuffed Cosmosil $40C_{18}$ OPN in 500 mm \times 32 mm i.d., mobile phase, CH₃CN–propanol–H₂O (2.5 : 1 : 7.5) (MPLC-2)]. Purification by preparative recycling HPLC was carried out under the following conditions: column A, COSMOSIL $5C_{18}$ -AR (250 mm×20 mm i.d.); column B, YMC-Pack Polyamine-II $(250 \text{ mm} \times 20 \text{ mm} \text{ i.d.}); \text{ mobile phase}, \text{ CH}_3\text{CN} : \text{propanol :}$ $H_2O=2.3 : 1 : 7.7$ (solv. 1), 2.4:1: 7.6 (solv. 2), 2.4: 1.2: 7.6 (solv. 3), 2.5 : 1.5 : 7.5 (solv. 4), 2.6:1: 7.4 (solv. 5), 2 : 3 : 6 (solv. 6), 6 : 1 : 2 (solv. 7); detection, UV 210 nm.

Materials The aerial part of *C. tibetana* KUNTZ was collected in central

Nepal in August. A voucher specimen is deposited at the Herbarium of the Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan.

Extraction and Isolation The dried aerial part (6.1 kg) of the plant was extracted by boiling with MeOH. The MeOH extract was concentrated to dryness under reduced pressure. The residue $(1150 g)$ was suspended in H₂O and successively extracted with hexane, EtOAc, and *n*-BuOH. The *n*-BuOH layer was concentrated and the residue was dissolved in a small amount of MeOH. This solution was poured into EtOAc and the resulting precipitate (80 g) was collected. The precipitate was subjected to silica gel column chromatography eluting with CHCl₃–MeOH $(100:2\rightarrow)100:4\rightarrow)100:6\rightarrow$ 100 : 8) and CHCl₃–MeOH–H₂O (25 : 3 : 0.3→25 : 5 : 0.5→25 : 7 : 0.9→ 25 : 10 : 1.8→25 : 12 : 2.5→25 : 14 : 3→25 : 16 : 4) to give sixteen fractions.

Fraction 13 (6.5 g) was separated by MPLC-1 and MPLC-2 to give crude **1** (1.8 g), which was purified by preparative recycling HPLC (column A, solv. 1) to give pure **1**. By MPLC-1 and MPLC-2, fraction 12 (3.7 g) gave crude **2** (1.5 g) which was purified by preparative recycling HPLC (column A, solv. 2) to give pure **2**. Fraction 10 (14.5 g) was separated by MPLC-1 and MPLC-2 to give crude **3** (7.5 g). This was purified by preparative recycling HPLC (column A, solv. 5) to give pure **3**. By MPLC-1 and MPLC-2, fraction 6 (5.5 g) gave a mixture of **4** and **5**. It was separated by HPLC (column A, solv. 6) to give **4** (63 mg) and **5** (38 mg). In the same manner as for

Table 1. ¹³C-NMR Chemical Shifts of Glycosyl Moieties in Pyridine- d_5

Table 2. ¹H-NMR Chemical Shifts of Glycosyl Moieties in Pyridine- $d_5^{(a)}$

fraction 6, fraction 9 (9.1 g) was separated to give four crude compounds. These compounds were purified by HPLC to give **6** (102 mg) (column A, solv. 3), **7** (52 mg) (column A, solv. 6), **8** (61 mg) (column A, solv. 4) and **13** (25 mg) (column B, solv. 7). Fraction 8 (11 g) was separated by MPLC-2 to give four crude compounds. These compounds were purified by repeated preparative recycling HPLC to give **9** (25 mg) (column A, solv. 3), **10** (31 mg) (column A, solv. 6), **11** (26 mg) (column A, solv. 4) and **12** (25 mg) (column B, solv. 7).

Acid-Hydrolysis of Saponins A few milligrams of each sample was dissolved in 2 N H_2 SO₄–50% dioxane (2—4 ml) and heated at 90 °C for 2 h. After cooling, the reaction mixture was diluted with H_2O and concentrated to about half volume to yield precipitates, which were collected by filtration. The precipitates were examined by TLC (solv., benzene : EtOAc=1 : 1), which revealed the presence of hederagenin (in the cases of **1** and **12**) or gypsogenin (in the case of **6**). The filtrate was neutralized with saturated Ba(OH)₂ aq. and centrifuged. The supernatant was evaporated and the residue was dissolved in H₂O (*ca.* 0.5 ml) and subjected to HPLC analysis [column, YMC-Pack Polyamine II (250 mm \times 4.6 mm i.d.); solv., CH₃CN : H_2O : $H_3PO_4 = 86$: 14: 0.05; detector, Shimadzu RID-2A refractive index de-

a) Coupling constants (*J*) in Hz are given in parentheses. *b*) Overlapped signals.

tector and JASCO OR-990 optical rotation detector; temperature, 50 °C], which revealed the presence of L-rhamnose (t_R 6.3 min, α_D –), D-ribose (t_R 7.2 min, α_{D} -), L-arabinose (t_{R} 10.5 min, α_{D} +) and D-glucose (t_{R} 16.9 min, $\alpha_{\rm p}$ +).

Clematibetoside A (1) Yellowish amorphous powder, $[\alpha]_D^{28}$ -59.2° $(c=0.33, \text{ MeOH})$. IR (KBr) cm⁻¹: 3440, 2931, 1700, 1633, 1527. FAB-MS (negative ion mode) m/z : 1837.8 $[(M-H)^{-}]$, 1659.8 $[(M-caffeoyloxy-$ H)⁻], 1365.7 [(M-Rha-Glc-Glc-H)⁻], 1189.6, 1027.6, 865.5, 733.5, 587.4. HR-FAB-MS: 1837.7908 (Calcd for C₈₅H₁₂₉O₄₃ 1837.7908). UV λ_{max} nm (log ε): 216 (4.33), 244 (4.19), 297 (4.31), 326 (4.38). ¹³C-NMR: Tables 1 and 4. 13C-NMR data for a caffeoyl moiety: 166.9 (C-1), 115.0 (C-2), 146.3 (C-3), 126.9 (C-4), 115.8 (C-5), 147.6 (C-6), 150.4 (C-7), 116.8 (C-8),

Table 3. NMR Data for Ribopyranosyl Moiety (12, 12a) and Methyl α - and β -D-Ribopyranoside in Pyridine- $d_5^{\alpha/2}$

	12	12a	Methyl β -D-ribopyranoside ^{b)}	Methyl α -D-ribopyranoside ^{b)}	
$\mathrm{H}\text{-}\mathrm{N}\mathrm{M}\mathrm{R}$					
$Rib-1$	5.59 d (4)	5.60 d (4)	5.08 d (4)	4.73 d (3)	
2	4.24^{c}	4.25 dd $(4, 3)$	4.13 ddd $(4, 3, 1)$	4.10 dd $(3, 3)$	
3	4.42 dd $(4, 3)$	4.43 dd $(3, 3)$	4.36 dd $(3, 3)$	4.32 dd $(3, 3)$	
4	4.26 m	4.27 m	4.20 dddd $(5, 3, 2.5, 1)$	4.07 ddd $(8, 3.5, 3)$	
5	$4.14 \text{ brd} (12)$	4.16 dd $(11, 5)$	4.00 dd $(11.5, 2.5)$	3.71 dd $(11, 3.5)$	
	4.22 $brd(12)$	4.24 dd $(11, 3)$	4.08 dd $(11.5, 5)$	4.19 dd $(11, 8)$	
13 C-NMR					
$Rib-1$	104.2	104.2	103.2	101.6	
2	72.9	72.9	72.3	70.7	
3	68.4	68.4	68.2	71.8	
4	70.6	70.6	70.3	68.8	
5	65.0	65.1	64.8 62.1		

a) Coupling constants (*J*) in Hz are given in parentheses. *b*) Data were taken in our laboratory and assignments were confirmed by ¹ H–1 H homo decoupling experiment and 1 H $-{}^{13}$ C COSY. *c*) Overlapped signals.

Table 4. ¹³C-NMR Chemical Shifts of Aglycone Moieties in Pyridine- d_5

C No.	Ole.	Hed.	Gyp.	1	6	12
$\mathbf{1}$	38.9	38.9	38.5	39.1	38.2	38.7
\overline{c}	28.2	27.6	27.1	26.4	25.2	25.7
3	78.0	73.7	71.7	81.0	80.2	81.4
$\overline{4}$	39.4	42.9	56.3	43.5	55.4	43.4
5	55.8	48.8	48.0	47.6	48.3	47.3
6	18.8	18.7	21.1	18.1	20.5	18.2
7	33.3	33.0	32.6	32.7	32.4	32.7
8	39.8	39.8	40.1	39.9	40.1	40.0
9	48.1	48.2	47.7	48.2	47.9	48.1
10	37.4	37.3	36.2	36.8	36.0	37.0
11	23.8	23.8	23.7	23.8	23.6	23.8
12	122.5	122.7	122.3	122.9	122.5	122.9
13	144.8	145.0	144.9	144.1	144.1	144.1
14	42.0	42.2	42.2	42.1	42.1	42.1
15	28.3	28.4	28.3	28.3	28.1	28.3
16	23.8	23.8	23.8	23.3	23.2	23.3
17	46.7	46.7	46.7	47.0	46.9	47.0
18	42.7	42.0	42.0	41.6	41.6	41.5
19	46.7	46.5	46.5	46.1	46.1	46.2
20	31.0	31.0	31.0	30.7	30.7	30.7
21	34.3	34.3	34.2	33.9	33.9	34.0
22	33.3	33.3	33.2	32.5	32.4	32.5
23	28.7	68.2	207.1	63.8	207.6	64.4
24	16.5	13.1	9.7	14.0	10.6	13.5
25	15.5	16.0	15.7	16.2	15.6	16.2
26	17.5	17.5	17.4	17.5	17.4	17.5
27	26.2	26.2	26.2	26.0	26.0	26.0
28	180.2	180.4	180.1	176.5	176.4	176.5
29	33.3	33.3	33.3	33.0	33.1	33.1
30	23.8	23.8	23.8	23.6	23.6	23.7

Ole.: oleanolic acid, Hed.: hederagenin, Gyp.: gypsogenin.

122.0 (C-9), ¹H-NMR: Table 2 (sugar). ¹H-NMR data for a caffeoyl moiety: 6.70 (1H, d, $J=16$ Hz), 7.11 (1H, br d, $J=8$ Hz), 7.19 (1H, br d, $J=8$ Hz), 7.56 (1H, br s), 8.08 (1H, d, $J=16$ Hz).

Mild Alkaline-Hydrolysis of 1 A solution of **1** (17 mg) in 0.1 ^N KOH (5 ml), was left to stand for 1 h at room temperature. The reaction mixture was neutralized with dil. H_2SO_4 and extracted with *n*-BuOH (5 ml×4). The *n*-BuOH layer was concentrated and purified by preparative HPLC (column A, solv. 6) to give caffeic acid and **1a** (11 mg). Compound **1a**: ¹H-NMR: 4.82 (1H, d, J = 6 Hz, H-1 of Ara), 4.97 (1H, d, J = 8 Hz, H-1 of Glc³), 4.98 $(1H, d, J=8 Hz, H-1 of Glc²), 5.16 (1H, d, J=7.5 Hz, H-1 of Glc⁴), 5.81 (1H,$ d, $J=5$ Hz, H-1 of Rib), 5.83 (1H, br s, H-1 of Rha¹), 6.22 (1H, d, $J=8$ Hz,

H-1 of Glc¹), 6.25 (1H, br s, H-1 of Rha²). ¹³C-NMR: Table 1 (sugar moiety). The NMR data of **1a** agreed with those of the clematernoside C deacylate obtained in the same manner from clematernoside $C¹$.

Clematibetoside B (6) White amorphous powder, $[\alpha]_D^{28}$ -13.0° $(c=0.51, \text{MeOH})$. IR (KBr) cm⁻¹: 3500, 2939, 1722, 1645, 1550. FAB-MS (negative ion mode) m/z : 1217.6 $[(M-H)^{-}]$, 747.4 $[(M-Rha-Glc-$ Glc-H)⁻], 1189.6, 1027.6, 865.5, 733.5, 587.4. HR-FAB-MS: 1217.5953 (Calcd for $C_{59}H_{93}O_{26}$ 1217.5955). ¹H-NMR: Table 2. ¹³C-NMR: Tables 1 and 4.

Clematibetoside C (12) White amorphous powder, $[\alpha]_D^{28}$ -25.7° $(c=0.67, \text{MeOH})$. IR (KBr) cm⁻¹: 3456, 2939, 1747, 1639, 1550. FAB-MS (negative ion mode) m/z : 1073.5 $[(M-H)^{-}]$, 603.4 $[(M-Rha-Glc-$ Glc-H)⁻], HR-FAB-MS: 1073.5531 (Calcd for $C_{53}H_{85}O_{22}$ 1073.5533). ¹H-NMR: Table 2. ¹³C-NMR: Tables 1 and 4.

Alkaline-Hydrolysis of 12 Compound **12** (13 mg) was dissolved in 0.5 N KOH (5 ml) and heated at 90 °C for 1 h. After cooling, the reaction mixture was neutralized with dil. H_2SO_4 and extracted with *n*-BuOH $(5 \text{ ml} \times 4)$. The *n*-BuOH layer was concentrated and purified by preparative HPLC (column A, solv. 6) to give $12a$ (5 mg). ¹H- and ¹³C-NMR: Table 3 (sugar moiety).

Acknowledgements The authors are grateful to members of the analytical center of this university for MS measurements. This work was supported in part by a Special Grant for Research from Hokuriku University.

References

- 1) Part VII: Kawata Y., Kizu H., Tomimori T., *Chem. Pharm. Bull*., **46**, 1891—1900 (1998).
- 2) Abstract of Papers, the 119th Annual Meeting of the Pharmaceutical Society of Japan, Tokushima, March 1999, Part 2, p. 152.
- 3) Mizutani K., Ohtani K., Wei J.-X., Kasai R., Tanaka O., *Planta Medica*, **50**, 327—331 (1984).
- 4) Fujita R., Itokawa H., Kumekawa Y., *Yakugaku Zasshi*, **94**, 189—193 (1974).
- 5) Kizu H., Tomimori T., *Chem. Pharm. Bull*., **27**, 2388—2393 (1979).
- 6) Tschesche R., Schmidt W., Wulff G., *Z. Naturforschung*, **20B**, 708— 709 (1965); Shimizu M., Arisawa M., Morita N., Kizu H., Tomimori T., *Chem. Pharm. Bull*., **26**, 655—659 (1978).
- 7) Kizu H., Tomimori T., *Chem. Pharm. Bull*., **28**, 3555—3560 (1980).
- 8) Kizu H., Kitayama S., Nakatani F., Tomimori T., Namba T., *Chem. Pharm. Bull*., **33**, 3324—3329 (1985).
- 9) Kizu H., Hirabayashi S., Suzuki M., Tomimori T., *Chem. Pharm. Bull*., **33**, 3473—3478 (1985).
- 10) Mukhamedziev M. M., Alimbaeva P. K., Gorovits T. T., Abubakirov N. K., *Khim. Prir. Soedin*., **7**, 153—158 (1971).
- 11) Nie R. L., Tanaka T., Miyakoshi M., Kasai R., Morita T., Zhou J., Tanaka O., *Phytochemistry*, **28**, 1711—1715 (1989).
- 12) Durette P. L., Horton D., *Carbohydrate Research*, **18**, 403—418 (1971).